/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.collections.map; import java.io.IOException; import java.io.ObjectInputStream; import java.io.ObjectOutputStream; import java.util.AbstractCollection; import java.util.AbstractMap; import java.util.AbstractSet; import java.util.Collection; import java.util.ConcurrentModificationException; import java.util.Iterator; import java.util.Map; import java.util.NoSuchElementException; import java.util.Set; import org.apache.commons.collections.IterableMap; import org.apache.commons.collections.KeyValue; import org.apache.commons.collections.MapIterator; import org.apache.commons.collections.iterators.EmptyIterator; import org.apache.commons.collections.iterators.EmptyMapIterator; /** * An abstract implementation of a hash-based map which provides numerous points for * subclasses to override. *
* This class implements all the features necessary for a subclass hash-based map.
* Key-value entries are stored in instances of the HashEntry
class,
* which can be overridden and replaced. The iterators can similarly be replaced,
* without the need to replace the KeySet, EntrySet and Values view classes.
*
* Overridable methods are provided to change the default hashing behaviour, and * to change how entries are added to and removed from the map. Hopefully, all you * need for unusual subclasses is here. *
* NOTE: From Commons Collections 3.1 this class extends AbstractMap. * This is to provide backwards compatibility for ReferenceMap between v3.0 and v3.1. * This extends clause will be removed in v4.0. * * @since Commons Collections 3.0 * @version $Revision: 646777 $ $Date: 2008-04-10 13:33:15 +0100 (Thu, 10 Apr 2008) $ * * @author java util HashMap * @author Stephen Colebourne * @author Christian Siefkes */ public class AbstractHashedMap extends AbstractMap implements IterableMap { protected static final String NO_NEXT_ENTRY = "No next() entry in the iteration"; protected static final String NO_PREVIOUS_ENTRY = "No previous() entry in the iteration"; protected static final String REMOVE_INVALID = "remove() can only be called once after next()"; protected static final String GETKEY_INVALID = "getKey() can only be called after next() and before remove()"; protected static final String GETVALUE_INVALID = "getValue() can only be called after next() and before remove()"; protected static final String SETVALUE_INVALID = "setValue() can only be called after next() and before remove()"; /** The default capacity to use */ protected static final int DEFAULT_CAPACITY = 16; /** The default threshold to use */ protected static final int DEFAULT_THRESHOLD = 12; /** The default load factor to use */ protected static final float DEFAULT_LOAD_FACTOR = 0.75f; /** The maximum capacity allowed */ protected static final int MAXIMUM_CAPACITY = 1 << 30; /** An object for masking null */ protected static final Object NULL = new Object(); /** Load factor, normally 0.75 */ protected transient float loadFactor; /** The size of the map */ protected transient int size; /** Map entries */ protected transient HashEntry[] data; /** Size at which to rehash */ protected transient int threshold; /** Modification count for iterators */ protected transient int modCount; /** Entry set */ protected transient EntrySet entrySet; /** Key set */ protected transient KeySet keySet; /** Values */ protected transient Values values; /** * Constructor only used in deserialization, do not use otherwise. */ protected AbstractHashedMap() { super(); } /** * Constructor which performs no validation on the passed in parameters. * * @param initialCapacity the initial capacity, must be a power of two * @param loadFactor the load factor, must be > 0.0f and generally < 1.0f * @param threshold the threshold, must be sensible */ protected AbstractHashedMap(int initialCapacity, float loadFactor, int threshold) { super(); this.loadFactor = loadFactor; this.data = new HashEntry[initialCapacity]; this.threshold = threshold; init(); } /** * Constructs a new, empty map with the specified initial capacity and * default load factor. * * @param initialCapacity the initial capacity * @throws IllegalArgumentException if the initial capacity is less than one */ protected AbstractHashedMap(int initialCapacity) { this(initialCapacity, DEFAULT_LOAD_FACTOR); } /** * Constructs a new, empty map with the specified initial capacity and * load factor. * * @param initialCapacity the initial capacity * @param loadFactor the load factor * @throws IllegalArgumentException if the initial capacity is less than one * @throws IllegalArgumentException if the load factor is less than or equal to zero */ protected AbstractHashedMap(int initialCapacity, float loadFactor) { super(); if (initialCapacity < 1) { throw new IllegalArgumentException("Initial capacity must be greater than 0"); } if (loadFactor <= 0.0f || Float.isNaN(loadFactor)) { throw new IllegalArgumentException("Load factor must be greater than 0"); } this.loadFactor = loadFactor; initialCapacity = calculateNewCapacity(initialCapacity); this.threshold = calculateThreshold(initialCapacity, loadFactor); this.data = new HashEntry[initialCapacity]; init(); } /** * Constructor copying elements from another map. * * @param map the map to copy * @throws NullPointerException if the map is null */ protected AbstractHashedMap(Map map) { this(Math.max(2 * map.size(), DEFAULT_CAPACITY), DEFAULT_LOAD_FACTOR); putAll(map); } /** * Initialise subclasses during construction, cloning or deserialization. */ protected void init() { } //----------------------------------------------------------------------- /** * Gets the value mapped to the key specified. * * @param key the key * @return the mapped value, null if no match */ public Object get(Object key) { key = convertKey(key); int hashCode = hash(key); HashEntry entry = data[hashIndex(hashCode, data.length)]; // no local for hash index while (entry != null) { if (entry.hashCode == hashCode && isEqualKey(key, entry.key)) { return entry.getValue(); } entry = entry.next; } return null; } /** * Gets the size of the map. * * @return the size */ public int size() { return size; } /** * Checks whether the map is currently empty. * * @return true if the map is currently size zero */ public boolean isEmpty() { return (size == 0); } //----------------------------------------------------------------------- /** * Checks whether the map contains the specified key. * * @param key the key to search for * @return true if the map contains the key */ public boolean containsKey(Object key) { key = convertKey(key); int hashCode = hash(key); HashEntry entry = data[hashIndex(hashCode, data.length)]; // no local for hash index while (entry != null) { if (entry.hashCode == hashCode && isEqualKey(key, entry.key)) { return true; } entry = entry.next; } return false; } /** * Checks whether the map contains the specified value. * * @param value the value to search for * @return true if the map contains the value */ public boolean containsValue(Object value) { if (value == null) { for (int i = 0, isize = data.length; i < isize; i++) { HashEntry entry = data[i]; while (entry != null) { if (entry.getValue() == null) { return true; } entry = entry.next; } } } else { for (int i = 0, isize = data.length; i < isize; i++) { HashEntry entry = data[i]; while (entry != null) { if (isEqualValue(value, entry.getValue())) { return true; } entry = entry.next; } } } return false; } //----------------------------------------------------------------------- /** * Puts a key-value mapping into this map. * * @param key the key to add * @param value the value to add * @return the value previously mapped to this key, null if none */ public Object put(Object key, Object value) { key = convertKey(key); int hashCode = hash(key); int index = hashIndex(hashCode, data.length); HashEntry entry = data[index]; while (entry != null) { if (entry.hashCode == hashCode && isEqualKey(key, entry.key)) { Object oldValue = entry.getValue(); updateEntry(entry, value); return oldValue; } entry = entry.next; } addMapping(index, hashCode, key, value); return null; } /** * Puts all the values from the specified map into this map. *
* This implementation iterates around the specified map and * uses {@link #put(Object, Object)}. * * @param map the map to add * @throws NullPointerException if the map is null */ public void putAll(Map map) { int mapSize = map.size(); if (mapSize == 0) { return; } int newSize = (int) ((size + mapSize) / loadFactor + 1); ensureCapacity(calculateNewCapacity(newSize)); for (Iterator it = map.entrySet().iterator(); it.hasNext();) { Map.Entry entry = (Map.Entry) it.next(); put(entry.getKey(), entry.getValue()); } } /** * Removes the specified mapping from this map. * * @param key the mapping to remove * @return the value mapped to the removed key, null if key not in map */ public Object remove(Object key) { key = convertKey(key); int hashCode = hash(key); int index = hashIndex(hashCode, data.length); HashEntry entry = data[index]; HashEntry previous = null; while (entry != null) { if (entry.hashCode == hashCode && isEqualKey(key, entry.key)) { Object oldValue = entry.getValue(); removeMapping(entry, index, previous); return oldValue; } previous = entry; entry = entry.next; } return null; } /** * Clears the map, resetting the size to zero and nullifying references * to avoid garbage collection issues. */ public void clear() { modCount++; HashEntry[] data = this.data; for (int i = data.length - 1; i >= 0; i--) { data[i] = null; } size = 0; } //----------------------------------------------------------------------- /** * Converts input keys to another object for storage in the map. * This implementation masks nulls. * Subclasses can override this to perform alternate key conversions. *
* The reverse conversion can be changed, if required, by overriding the
* getKey() method in the hash entry.
*
* @param key the key convert
* @return the converted key
*/
protected Object convertKey(Object key) {
return (key == null ? NULL : key);
}
/**
* Gets the hash code for the key specified.
* This implementation uses the additional hashing routine from JDK1.4.
* Subclasses can override this to return alternate hash codes.
*
* @param key the key to get a hash code for
* @return the hash code
*/
protected int hash(Object key) {
// same as JDK 1.4
int h = key.hashCode();
h += ~(h << 9);
h ^= (h >>> 14);
h += (h << 4);
h ^= (h >>> 10);
return h;
}
/**
* Compares two keys, in internal converted form, to see if they are equal.
* This implementation uses the equals method and assumes neither key is null.
* Subclasses can override this to match differently.
*
* @param key1 the first key to compare passed in from outside
* @param key2 the second key extracted from the entry via entry.key
* @return true if equal
*/
protected boolean isEqualKey(Object key1, Object key2) {
return (key1 == key2 || key1.equals(key2));
}
/**
* Compares two values, in external form, to see if they are equal.
* This implementation uses the equals method and assumes neither value is null.
* Subclasses can override this to match differently.
*
* @param value1 the first value to compare passed in from outside
* @param value2 the second value extracted from the entry via getValue()
* @return true if equal
*/
protected boolean isEqualValue(Object value1, Object value2) {
return (value1 == value2 || value1.equals(value2));
}
/**
* Gets the index into the data storage for the hashCode specified.
* This implementation uses the least significant bits of the hashCode.
* Subclasses can override this to return alternate bucketing.
*
* @param hashCode the hash code to use
* @param dataSize the size of the data to pick a bucket from
* @return the bucket index
*/
protected int hashIndex(int hashCode, int dataSize) {
return hashCode & (dataSize - 1);
}
//-----------------------------------------------------------------------
/**
* Gets the entry mapped to the key specified.
*
* This method exists for subclasses that may need to perform a multi-step * process accessing the entry. The public methods in this class don't use this * method to gain a small performance boost. * * @param key the key * @return the entry, null if no match */ protected HashEntry getEntry(Object key) { key = convertKey(key); int hashCode = hash(key); HashEntry entry = data[hashIndex(hashCode, data.length)]; // no local for hash index while (entry != null) { if (entry.hashCode == hashCode && isEqualKey(key, entry.key)) { return entry; } entry = entry.next; } return null; } //----------------------------------------------------------------------- /** * Updates an existing key-value mapping to change the value. *
* This implementation calls setValue()
on the entry.
* Subclasses could override to handle changes to the map.
*
* @param entry the entry to update
* @param newValue the new value to store
*/
protected void updateEntry(HashEntry entry, Object newValue) {
entry.setValue(newValue);
}
/**
* Reuses an existing key-value mapping, storing completely new data.
*
* This implementation sets all the data fields on the entry. * Subclasses could populate additional entry fields. * * @param entry the entry to update, not null * @param hashIndex the index in the data array * @param hashCode the hash code of the key to add * @param key the key to add * @param value the value to add */ protected void reuseEntry(HashEntry entry, int hashIndex, int hashCode, Object key, Object value) { entry.next = data[hashIndex]; entry.hashCode = hashCode; entry.key = key; entry.value = value; } //----------------------------------------------------------------------- /** * Adds a new key-value mapping into this map. *
* This implementation calls createEntry()
, addEntry()
* and checkCapacity()
.
* It also handles changes to modCount
and size
.
* Subclasses could override to fully control adds to the map.
*
* @param hashIndex the index into the data array to store at
* @param hashCode the hash code of the key to add
* @param key the key to add
* @param value the value to add
*/
protected void addMapping(int hashIndex, int hashCode, Object key, Object value) {
modCount++;
HashEntry entry = createEntry(data[hashIndex], hashCode, key, value);
addEntry(entry, hashIndex);
size++;
checkCapacity();
}
/**
* Creates an entry to store the key-value data.
*
* This implementation creates a new HashEntry instance. * Subclasses can override this to return a different storage class, * or implement caching. * * @param next the next entry in sequence * @param hashCode the hash code to use * @param key the key to store * @param value the value to store * @return the newly created entry */ protected HashEntry createEntry(HashEntry next, int hashCode, Object key, Object value) { return new HashEntry(next, hashCode, key, value); } /** * Adds an entry into this map. *
* This implementation adds the entry to the data storage table. * Subclasses could override to handle changes to the map. * * @param entry the entry to add * @param hashIndex the index into the data array to store at */ protected void addEntry(HashEntry entry, int hashIndex) { data[hashIndex] = entry; } //----------------------------------------------------------------------- /** * Removes a mapping from the map. *
* This implementation calls removeEntry()
and destroyEntry()
.
* It also handles changes to modCount
and size
.
* Subclasses could override to fully control removals from the map.
*
* @param entry the entry to remove
* @param hashIndex the index into the data structure
* @param previous the previous entry in the chain
*/
protected void removeMapping(HashEntry entry, int hashIndex, HashEntry previous) {
modCount++;
removeEntry(entry, hashIndex, previous);
size--;
destroyEntry(entry);
}
/**
* Removes an entry from the chain stored in a particular index.
*
* This implementation removes the entry from the data storage table. * The size is not updated. * Subclasses could override to handle changes to the map. * * @param entry the entry to remove * @param hashIndex the index into the data structure * @param previous the previous entry in the chain */ protected void removeEntry(HashEntry entry, int hashIndex, HashEntry previous) { if (previous == null) { data[hashIndex] = entry.next; } else { previous.next = entry.next; } } /** * Kills an entry ready for the garbage collector. *
* This implementation prepares the HashEntry for garbage collection. * Subclasses can override this to implement caching (override clear as well). * * @param entry the entry to destroy */ protected void destroyEntry(HashEntry entry) { entry.next = null; entry.key = null; entry.value = null; } //----------------------------------------------------------------------- /** * Checks the capacity of the map and enlarges it if necessary. *
* This implementation uses the threshold to check if the map needs enlarging
*/
protected void checkCapacity() {
if (size >= threshold) {
int newCapacity = data.length * 2;
if (newCapacity <= MAXIMUM_CAPACITY) {
ensureCapacity(newCapacity);
}
}
}
/**
* Changes the size of the data structure to the capacity proposed.
*
* @param newCapacity the new capacity of the array (a power of two, less or equal to max)
*/
protected void ensureCapacity(int newCapacity) {
int oldCapacity = data.length;
if (newCapacity <= oldCapacity) {
return;
}
if (size == 0) {
threshold = calculateThreshold(newCapacity, loadFactor);
data = new HashEntry[newCapacity];
} else {
HashEntry oldEntries[] = data;
HashEntry newEntries[] = new HashEntry[newCapacity];
modCount++;
for (int i = oldCapacity - 1; i >= 0; i--) {
HashEntry entry = oldEntries[i];
if (entry != null) {
oldEntries[i] = null; // gc
do {
HashEntry next = entry.next;
int index = hashIndex(entry.hashCode, newCapacity);
entry.next = newEntries[index];
newEntries[index] = entry;
entry = next;
} while (entry != null);
}
}
threshold = calculateThreshold(newCapacity, loadFactor);
data = newEntries;
}
}
/**
* Calculates the new capacity of the map.
* This implementation normalizes the capacity to a power of two.
*
* @param proposedCapacity the proposed capacity
* @return the normalized new capacity
*/
protected int calculateNewCapacity(int proposedCapacity) {
int newCapacity = 1;
if (proposedCapacity > MAXIMUM_CAPACITY) {
newCapacity = MAXIMUM_CAPACITY;
} else {
while (newCapacity < proposedCapacity) {
newCapacity <<= 1; // multiply by two
}
if (newCapacity > MAXIMUM_CAPACITY) {
newCapacity = MAXIMUM_CAPACITY;
}
}
return newCapacity;
}
/**
* Calculates the new threshold of the map, where it will be resized.
* This implementation uses the load factor.
*
* @param newCapacity the new capacity
* @param factor the load factor
* @return the new resize threshold
*/
protected int calculateThreshold(int newCapacity, float factor) {
return (int) (newCapacity * factor);
}
//-----------------------------------------------------------------------
/**
* Gets the next
field from a HashEntry
.
* Used in subclasses that have no visibility of the field.
*
* @param entry the entry to query, must not be null
* @return the next
field of the entry
* @throws NullPointerException if the entry is null
* @since Commons Collections 3.1
*/
protected HashEntry entryNext(HashEntry entry) {
return entry.next;
}
/**
* Gets the hashCode
field from a HashEntry
.
* Used in subclasses that have no visibility of the field.
*
* @param entry the entry to query, must not be null
* @return the hashCode
field of the entry
* @throws NullPointerException if the entry is null
* @since Commons Collections 3.1
*/
protected int entryHashCode(HashEntry entry) {
return entry.hashCode;
}
/**
* Gets the key
field from a HashEntry
.
* Used in subclasses that have no visibility of the field.
*
* @param entry the entry to query, must not be null
* @return the key
field of the entry
* @throws NullPointerException if the entry is null
* @since Commons Collections 3.1
*/
protected Object entryKey(HashEntry entry) {
return entry.key;
}
/**
* Gets the value
field from a HashEntry
.
* Used in subclasses that have no visibility of the field.
*
* @param entry the entry to query, must not be null
* @return the value
field of the entry
* @throws NullPointerException if the entry is null
* @since Commons Collections 3.1
*/
protected Object entryValue(HashEntry entry) {
return entry.value;
}
//-----------------------------------------------------------------------
/**
* Gets an iterator over the map.
* Changes made to the iterator affect this map.
*
* A MapIterator returns the keys in the map. It also provides convenient * methods to get the key and value, and set the value. * It avoids the need to create an entrySet/keySet/values object. * It also avoids creating the Map.Entry object. * * @return the map iterator */ public MapIterator mapIterator() { if (size == 0) { return EmptyMapIterator.INSTANCE; } return new HashMapIterator(this); } /** * MapIterator implementation. */ protected static class HashMapIterator extends HashIterator implements MapIterator { protected HashMapIterator(AbstractHashedMap parent) { super(parent); } public Object next() { return super.nextEntry().getKey(); } public Object getKey() { HashEntry current = currentEntry(); if (current == null) { throw new IllegalStateException(AbstractHashedMap.GETKEY_INVALID); } return current.getKey(); } public Object getValue() { HashEntry current = currentEntry(); if (current == null) { throw new IllegalStateException(AbstractHashedMap.GETVALUE_INVALID); } return current.getValue(); } public Object setValue(Object value) { HashEntry current = currentEntry(); if (current == null) { throw new IllegalStateException(AbstractHashedMap.SETVALUE_INVALID); } return current.setValue(value); } } //----------------------------------------------------------------------- /** * Gets the entrySet view of the map. * Changes made to the view affect this map. * To simply iterate through the entries, use {@link #mapIterator()}. * * @return the entrySet view */ public Set entrySet() { if (entrySet == null) { entrySet = new EntrySet(this); } return entrySet; } /** * Creates an entry set iterator. * Subclasses can override this to return iterators with different properties. * * @return the entrySet iterator */ protected Iterator createEntrySetIterator() { if (size() == 0) { return EmptyIterator.INSTANCE; } return new EntrySetIterator(this); } /** * EntrySet implementation. */ protected static class EntrySet extends AbstractSet { /** The parent map */ protected final AbstractHashedMap parent; protected EntrySet(AbstractHashedMap parent) { super(); this.parent = parent; } public int size() { return parent.size(); } public void clear() { parent.clear(); } public boolean contains(Object entry) { if (entry instanceof Map.Entry) { Map.Entry e = (Map.Entry) entry; Entry match = parent.getEntry(e.getKey()); return (match != null && match.equals(e)); } return false; } public boolean remove(Object obj) { if (obj instanceof Map.Entry == false) { return false; } if (contains(obj) == false) { return false; } Map.Entry entry = (Map.Entry) obj; Object key = entry.getKey(); parent.remove(key); return true; } public Iterator iterator() { return parent.createEntrySetIterator(); } } /** * EntrySet iterator. */ protected static class EntrySetIterator extends HashIterator { protected EntrySetIterator(AbstractHashedMap parent) { super(parent); } public Object next() { return super.nextEntry(); } } //----------------------------------------------------------------------- /** * Gets the keySet view of the map. * Changes made to the view affect this map. * To simply iterate through the keys, use {@link #mapIterator()}. * * @return the keySet view */ public Set keySet() { if (keySet == null) { keySet = new KeySet(this); } return keySet; } /** * Creates a key set iterator. * Subclasses can override this to return iterators with different properties. * * @return the keySet iterator */ protected Iterator createKeySetIterator() { if (size() == 0) { return EmptyIterator.INSTANCE; } return new KeySetIterator(this); } /** * KeySet implementation. */ protected static class KeySet extends AbstractSet { /** The parent map */ protected final AbstractHashedMap parent; protected KeySet(AbstractHashedMap parent) { super(); this.parent = parent; } public int size() { return parent.size(); } public void clear() { parent.clear(); } public boolean contains(Object key) { return parent.containsKey(key); } public boolean remove(Object key) { boolean result = parent.containsKey(key); parent.remove(key); return result; } public Iterator iterator() { return parent.createKeySetIterator(); } } /** * KeySet iterator. */ protected static class KeySetIterator extends EntrySetIterator { protected KeySetIterator(AbstractHashedMap parent) { super(parent); } public Object next() { return super.nextEntry().getKey(); } } //----------------------------------------------------------------------- /** * Gets the values view of the map. * Changes made to the view affect this map. * To simply iterate through the values, use {@link #mapIterator()}. * * @return the values view */ public Collection values() { if (values == null) { values = new Values(this); } return values; } /** * Creates a values iterator. * Subclasses can override this to return iterators with different properties. * * @return the values iterator */ protected Iterator createValuesIterator() { if (size() == 0) { return EmptyIterator.INSTANCE; } return new ValuesIterator(this); } /** * Values implementation. */ protected static class Values extends AbstractCollection { /** The parent map */ protected final AbstractHashedMap parent; protected Values(AbstractHashedMap parent) { super(); this.parent = parent; } public int size() { return parent.size(); } public void clear() { parent.clear(); } public boolean contains(Object value) { return parent.containsValue(value); } public Iterator iterator() { return parent.createValuesIterator(); } } /** * Values iterator. */ protected static class ValuesIterator extends HashIterator { protected ValuesIterator(AbstractHashedMap parent) { super(parent); } public Object next() { return super.nextEntry().getValue(); } } //----------------------------------------------------------------------- /** * HashEntry used to store the data. *
* If you subclass AbstractHashedMap
but not HashEntry
* then you will not be able to access the protected fields.
* The entryXxx()
methods on AbstractHashedMap
exist
* to provide the necessary access.
*/
protected static class HashEntry implements Map.Entry, KeyValue {
/** The next entry in the hash chain */
protected HashEntry next;
/** The hash code of the key */
protected int hashCode;
/** The key */
protected Object key;
/** The value */
protected Object value;
protected HashEntry(HashEntry next, int hashCode, Object key, Object value) {
super();
this.next = next;
this.hashCode = hashCode;
this.key = key;
this.value = value;
}
public Object getKey() {
return (key == NULL ? null : key);
}
public Object getValue() {
return value;
}
public Object setValue(Object value) {
Object old = this.value;
this.value = value;
return old;
}
public boolean equals(Object obj) {
if (obj == this) {
return true;
}
if (obj instanceof Map.Entry == false) {
return false;
}
Map.Entry other = (Map.Entry) obj;
return
(getKey() == null ? other.getKey() == null : getKey().equals(other.getKey())) &&
(getValue() == null ? other.getValue() == null : getValue().equals(other.getValue()));
}
public int hashCode() {
return (getKey() == null ? 0 : getKey().hashCode()) ^
(getValue() == null ? 0 : getValue().hashCode());
}
public String toString() {
return new StringBuffer().append(getKey()).append('=').append(getValue()).toString();
}
}
/**
* Base Iterator
*/
protected static abstract class HashIterator implements Iterator {
/** The parent map */
protected final AbstractHashedMap parent;
/** The current index into the array of buckets */
protected int hashIndex;
/** The last returned entry */
protected HashEntry last;
/** The next entry */
protected HashEntry next;
/** The modification count expected */
protected int expectedModCount;
protected HashIterator(AbstractHashedMap parent) {
super();
this.parent = parent;
HashEntry[] data = parent.data;
int i = data.length;
HashEntry next = null;
while (i > 0 && next == null) {
next = data[--i];
}
this.next = next;
this.hashIndex = i;
this.expectedModCount = parent.modCount;
}
public boolean hasNext() {
return (next != null);
}
protected HashEntry nextEntry() {
if (parent.modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
HashEntry newCurrent = next;
if (newCurrent == null) {
throw new NoSuchElementException(AbstractHashedMap.NO_NEXT_ENTRY);
}
HashEntry[] data = parent.data;
int i = hashIndex;
HashEntry n = newCurrent.next;
while (n == null && i > 0) {
n = data[--i];
}
next = n;
hashIndex = i;
last = newCurrent;
return newCurrent;
}
protected HashEntry currentEntry() {
return last;
}
public void remove() {
if (last == null) {
throw new IllegalStateException(AbstractHashedMap.REMOVE_INVALID);
}
if (parent.modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
parent.remove(last.getKey());
last = null;
expectedModCount = parent.modCount;
}
public String toString() {
if (last != null) {
return "Iterator[" + last.getKey() + "=" + last.getValue() + "]";
} else {
return "Iterator[]";
}
}
}
//-----------------------------------------------------------------------
/**
* Writes the map data to the stream. This method must be overridden if a
* subclass must be setup before put()
is used.
*
* Serialization is not one of the JDK's nicest topics. Normal serialization will
* initialise the superclass before the subclass. Sometimes however, this isn't
* what you want, as in this case the put()
method on read can be
* affected by subclass state.
*
* The solution adopted here is to serialize the state data of this class in
* this protected method. This method must be called by the
* writeObject()
of the first serializable subclass.
*
* Subclasses may override if they have a specific field that must be present
* on read before this implementation will work. Generally, the read determines
* what must be serialized here, if anything.
*
* @param out the output stream
*/
protected void doWriteObject(ObjectOutputStream out) throws IOException {
out.writeFloat(loadFactor);
out.writeInt(data.length);
out.writeInt(size);
for (MapIterator it = mapIterator(); it.hasNext();) {
out.writeObject(it.next());
out.writeObject(it.getValue());
}
}
/**
* Reads the map data from the stream. This method must be overridden if a
* subclass must be setup before put()
is used.
*
* Serialization is not one of the JDK's nicest topics. Normal serialization will
* initialise the superclass before the subclass. Sometimes however, this isn't
* what you want, as in this case the put()
method on read can be
* affected by subclass state.
*
* The solution adopted here is to deserialize the state data of this class in
* this protected method. This method must be called by the
* readObject()
of the first serializable subclass.
*
* Subclasses may override if the subclass has a specific field that must be present
* before put()
or calculateThreshold()
will work correctly.
*
* @param in the input stream
*/
protected void doReadObject(ObjectInputStream in) throws IOException, ClassNotFoundException {
loadFactor = in.readFloat();
int capacity = in.readInt();
int size = in.readInt();
init();
threshold = calculateThreshold(capacity, loadFactor);
data = new HashEntry[capacity];
for (int i = 0; i < size; i++) {
Object key = in.readObject();
Object value = in.readObject();
put(key, value);
}
}
//-----------------------------------------------------------------------
/**
* Clones the map without cloning the keys or values.
*
* To implement clone()
, a subclass must implement the
* Cloneable
interface and make this method public.
*
* @return a shallow clone
*/
protected Object clone() {
try {
AbstractHashedMap cloned = (AbstractHashedMap) super.clone();
cloned.data = new HashEntry[data.length];
cloned.entrySet = null;
cloned.keySet = null;
cloned.values = null;
cloned.modCount = 0;
cloned.size = 0;
cloned.init();
cloned.putAll(this);
return cloned;
} catch (CloneNotSupportedException ex) {
return null; // should never happen
}
}
/**
* Compares this map with another.
*
* @param obj the object to compare to
* @return true if equal
*/
public boolean equals(Object obj) {
if (obj == this) {
return true;
}
if (obj instanceof Map == false) {
return false;
}
Map map = (Map) obj;
if (map.size() != size()) {
return false;
}
MapIterator it = mapIterator();
try {
while (it.hasNext()) {
Object key = it.next();
Object value = it.getValue();
if (value == null) {
if (map.get(key) != null || map.containsKey(key) == false) {
return false;
}
} else {
if (value.equals(map.get(key)) == false) {
return false;
}
}
}
} catch (ClassCastException ignored) {
return false;
} catch (NullPointerException ignored) {
return false;
}
return true;
}
/**
* Gets the standard Map hashCode.
*
* @return the hash code defined in the Map interface
*/
public int hashCode() {
int total = 0;
Iterator it = createEntrySetIterator();
while (it.hasNext()) {
total += it.next().hashCode();
}
return total;
}
/**
* Gets the map as a String.
*
* @return a string version of the map
*/
public String toString() {
if (size() == 0) {
return "{}";
}
StringBuffer buf = new StringBuffer(32 * size());
buf.append('{');
MapIterator it = mapIterator();
boolean hasNext = it.hasNext();
while (hasNext) {
Object key = it.next();
Object value = it.getValue();
buf.append(key == this ? "(this Map)" : key)
.append('=')
.append(value == this ? "(this Map)" : value);
hasNext = it.hasNext();
if (hasNext) {
buf.append(',').append(' ');
}
}
buf.append('}');
return buf.toString();
}
}