/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math.distribution; import java.io.Serializable; import org.apache.commons.math.ConvergenceException; import org.apache.commons.math.FunctionEvaluationException; import org.apache.commons.math.MathException; import org.apache.commons.math.analysis.UnivariateRealFunction; import org.apache.commons.math.analysis.UnivariateRealSolverUtils; /** * Base class for continuous distributions. Default implementations are * provided for some of the methods that do not vary from distribution to * distribution. * * @version $Revision: 506600 $ $Date: 2007-02-12 12:35:59 -0700 (Mon, 12 Feb 2007) $ */ public abstract class AbstractContinuousDistribution extends AbstractDistribution implements ContinuousDistribution, Serializable { /** Serializable version identifier */ private static final long serialVersionUID = -38038050983108802L; /** * Default constructor. */ protected AbstractContinuousDistribution() { super(); } /** * For this distribution, X, this method returns the critical point x, such * that P(X < x) = p. * * @param p the desired probability * @return x, such that P(X < x) = p * @throws MathException if the inverse cumulative probability can not be * computed due to convergence or other numerical errors. * @throws IllegalArgumentException if p is not a valid * probability. */ public double inverseCumulativeProbability(final double p) throws MathException { if (p < 0.0 || p > 1.0) { throw new IllegalArgumentException("p must be between 0.0 and 1.0, inclusive."); } // by default, do simple root finding using bracketing and default solver. // subclasses can overide if there is a better method. UnivariateRealFunction rootFindingFunction = new UnivariateRealFunction() { public double value(double x) throws FunctionEvaluationException { try { return cumulativeProbability(x) - p; } catch (MathException ex) { throw new FunctionEvaluationException(x, ex.getPattern(), ex.getArguments(), ex); } } }; // Try to bracket root, test domain endoints if this fails double lowerBound = getDomainLowerBound(p); double upperBound = getDomainUpperBound(p); double[] bracket = null; try { bracket = UnivariateRealSolverUtils.bracket( rootFindingFunction, getInitialDomain(p), lowerBound, upperBound); } catch (ConvergenceException ex) { /* * Check domain endpoints to see if one gives value that is within * the default solver's defaultAbsoluteAccuracy of 0 (will be the * case if density has bounded support and p is 0 or 1). * * TODO: expose the default solver, defaultAbsoluteAccuracy as * a constant. */ if (Math.abs(rootFindingFunction.value(lowerBound)) < 1E-6) { return lowerBound; } if (Math.abs(rootFindingFunction.value(upperBound)) < 1E-6) { return upperBound; } // Failed bracket convergence was not because of corner solution throw new MathException(ex); } // find root double root = UnivariateRealSolverUtils.solve(rootFindingFunction, bracket[0],bracket[1]); return root; } /** * Access the initial domain value, based on p, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p the desired probability for the critical value * @return initial domain value */ protected abstract double getInitialDomain(double p); /** * Access the domain value lower bound, based on p, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p the desired probability for the critical value * @return domain value lower bound, i.e. * P(X < lower bound) < p */ protected abstract double getDomainLowerBound(double p); /** * Access the domain value upper bound, based on p, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p the desired probability for the critical value * @return domain value upper bound, i.e. * P(X < upper bound) > p */ protected abstract double getDomainUpperBound(double p); }