/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math.distribution; import java.io.Serializable; import org.apache.commons.math.MathException; import org.apache.commons.math.special.Beta; import org.apache.commons.math.util.MathUtils; /** * The default implementation of {@link BinomialDistribution}. * * @version $Revision: 617953 $ $Date: 2008-02-02 22:54:00 -0700 (Sat, 02 Feb 2008) $ */ public class BinomialDistributionImpl extends AbstractIntegerDistribution implements BinomialDistribution, Serializable { /** Serializable version identifier */ private static final long serialVersionUID = 6751309484392813623L; /** The number of trials. */ private int numberOfTrials; /** The probability of success. */ private double probabilityOfSuccess; /** * Create a binomial distribution with the given number of trials and * probability of success. * @param trials the number of trials. * @param p the probability of success. */ public BinomialDistributionImpl(int trials, double p) { super(); setNumberOfTrials(trials); setProbabilityOfSuccess(p); } /** * Access the number of trials for this distribution. * @return the number of trials. */ public int getNumberOfTrials() { return numberOfTrials; } /** * Access the probability of success for this distribution. * @return the probability of success. */ public double getProbabilityOfSuccess() { return probabilityOfSuccess; } /** * Change the number of trials for this distribution. * @param trials the new number of trials. * @throws IllegalArgumentException if trials is not a valid * number of trials. */ public void setNumberOfTrials(int trials) { if (trials < 0) { throw new IllegalArgumentException("number of trials must be non-negative."); } numberOfTrials = trials; } /** * Change the probability of success for this distribution. * @param p the new probability of success. * @throws IllegalArgumentException if p is not a valid * probability. */ public void setProbabilityOfSuccess(double p) { if (p < 0.0 || p > 1.0) { throw new IllegalArgumentException("probability of success must be between 0.0 and 1.0, inclusive."); } probabilityOfSuccess = p; } /** * Access the domain value lower bound, based on p, used to * bracket a PDF root. * * @param p the desired probability for the critical value * @return domain value lower bound, i.e. * P(X < lower bound) < p */ protected int getDomainLowerBound(double p) { return -1; } /** * Access the domain value upper bound, based on p, used to * bracket a PDF root. * * @param p the desired probability for the critical value * @return domain value upper bound, i.e. * P(X < upper bound) > p */ protected int getDomainUpperBound(double p) { return getNumberOfTrials(); } /** * For this distribution, X, this method returns P(X ≤ x). * @param x the value at which the PDF is evaluated. * @return PDF for this distribution. * @throws MathException if the cumulative probability can not be * computed due to convergence or other numerical errors. */ public double cumulativeProbability(int x) throws MathException { double ret; if (x < 0) { ret = 0.0; } else if (x >= getNumberOfTrials()) { ret = 1.0; } else { ret = 1.0 - Beta.regularizedBeta( getProbabilityOfSuccess(), x + 1.0, getNumberOfTrials() - x); } return ret; } /** * For this disbution, X, this method returns P(X = x). * * @param x the value at which the PMF is evaluated. * @return PMF for this distribution. */ public double probability(int x) { double ret; if (x < 0 || x > getNumberOfTrials()) { ret = 0.0; } else { ret = MathUtils.binomialCoefficientDouble( getNumberOfTrials(), x) * Math.pow(getProbabilityOfSuccess(), x) * Math.pow(1.0 - getProbabilityOfSuccess(), getNumberOfTrials() - x); } return ret; } /** * For this distribution, X, this method returns the largest x, such * that P(X ≤ x) ≤ p. *

* Returns -1 for p=0 and Integer.MAX_VALUE for * p=1.

* * @param p the desired probability * @return the largest x such that P(X ≤ x) <= p * @throws MathException if the inverse cumulative probability can not be * computed due to convergence or other numerical errors. * @throws IllegalArgumentException if p < 0 or p > 1 */ public int inverseCumulativeProbability(final double p) throws MathException { // handle extreme values explicitly if (p == 0) { return -1; } if (p == 1) { return Integer.MAX_VALUE; } // use default bisection impl return super.inverseCumulativeProbability(p); } }