/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math.distribution; import java.io.Serializable; import org.apache.commons.math.MathException; import org.apache.commons.math.special.Beta; /** * Default implementation of * {@link org.apache.commons.math.distribution.FDistribution}. * * @version $Revision: 619917 $ $Date: 2008-02-08 08:44:11 -0700 (Fri, 08 Feb 2008) $ */ public class FDistributionImpl extends AbstractContinuousDistribution implements FDistribution, Serializable { /** Serializable version identifier */ private static final long serialVersionUID = -8516354193418641566L; /** The numerator degrees of freedom*/ private double numeratorDegreesOfFreedom; /** The numerator degrees of freedom*/ private double denominatorDegreesOfFreedom; /** * Create a F distribution using the given degrees of freedom. * @param numeratorDegreesOfFreedom the numerator degrees of freedom. * @param denominatorDegreesOfFreedom the denominator degrees of freedom. */ public FDistributionImpl(double numeratorDegreesOfFreedom, double denominatorDegreesOfFreedom) { super(); setNumeratorDegreesOfFreedom(numeratorDegreesOfFreedom); setDenominatorDegreesOfFreedom(denominatorDegreesOfFreedom); } /** * For this distribution, X, this method returns P(X < x). * * The implementation of this method is based on: * * * @param x the value at which the CDF is evaluated. * @return CDF for this distribution. * @throws MathException if the cumulative probability can not be * computed due to convergence or other numerical errors. */ public double cumulativeProbability(double x) throws MathException { double ret; if (x <= 0.0) { ret = 0.0; } else { double n = getNumeratorDegreesOfFreedom(); double m = getDenominatorDegreesOfFreedom(); ret = Beta.regularizedBeta((n * x) / (m + n * x), 0.5 * n, 0.5 * m); } return ret; } /** * For this distribution, X, this method returns the critical point x, such * that P(X < x) = p. *

* Returns 0 for p=0 and Double.POSITIVE_INFINITY for p=1.

* * @param p the desired probability * @return x, such that P(X < x) = p * @throws MathException if the inverse cumulative probability can not be * computed due to convergence or other numerical errors. * @throws IllegalArgumentException if p is not a valid * probability. */ public double inverseCumulativeProbability(final double p) throws MathException { if (p == 0) { return 0d; } if (p == 1) { return Double.POSITIVE_INFINITY; } return super.inverseCumulativeProbability(p); } /** * Access the domain value lower bound, based on p, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p the desired probability for the critical value * @return domain value lower bound, i.e. * P(X < lower bound) < p */ protected double getDomainLowerBound(double p) { return 0.0; } /** * Access the domain value upper bound, based on p, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p the desired probability for the critical value * @return domain value upper bound, i.e. * P(X < upper bound) > p */ protected double getDomainUpperBound(double p) { return Double.MAX_VALUE; } /** * Access the initial domain value, based on p, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p the desired probability for the critical value * @return initial domain value */ protected double getInitialDomain(double p) { return getDenominatorDegreesOfFreedom() / (getDenominatorDegreesOfFreedom() - 2.0); } /** * Modify the numerator degrees of freedom. * @param degreesOfFreedom the new numerator degrees of freedom. * @throws IllegalArgumentException if degreesOfFreedom is not * positive. */ public void setNumeratorDegreesOfFreedom(double degreesOfFreedom) { if (degreesOfFreedom <= 0.0) { throw new IllegalArgumentException( "degrees of freedom must be positive."); } this.numeratorDegreesOfFreedom = degreesOfFreedom; } /** * Access the numerator degrees of freedom. * @return the numerator degrees of freedom. */ public double getNumeratorDegreesOfFreedom() { return numeratorDegreesOfFreedom; } /** * Modify the denominator degrees of freedom. * @param degreesOfFreedom the new denominator degrees of freedom. * @throws IllegalArgumentException if degreesOfFreedom is not * positive. */ public void setDenominatorDegreesOfFreedom(double degreesOfFreedom) { if (degreesOfFreedom <= 0.0) { throw new IllegalArgumentException( "degrees of freedom must be positive."); } this.denominatorDegreesOfFreedom = degreesOfFreedom; } /** * Access the denominator degrees of freedom. * @return the denominator degrees of freedom. */ public double getDenominatorDegreesOfFreedom() { return denominatorDegreesOfFreedom; } }