/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math.distribution;
import java.io.Serializable;
import org.apache.commons.math.MathException;
import org.apache.commons.math.MaxIterationsExceededException;
import org.apache.commons.math.special.Erf;
/**
* Default implementation of
* {@link org.apache.commons.math.distribution.NormalDistribution}.
*
* @version $Revision: 617953 $ $Date: 2008-02-02 22:54:00 -0700 (Sat, 02 Feb 2008) $
*/
public class NormalDistributionImpl extends AbstractContinuousDistribution
implements NormalDistribution, Serializable {
/** Serializable version identifier */
private static final long serialVersionUID = 8589540077390120676L;
/** The mean of this distribution. */
private double mean = 0;
/** The standard deviation of this distribution. */
private double standardDeviation = 1;
/**
* Create a normal distribution using the given mean and standard deviation.
* @param mean mean for this distribution
* @param sd standard deviation for this distribution
*/
public NormalDistributionImpl(double mean, double sd){
super();
setMean(mean);
setStandardDeviation(sd);
}
/**
* Creates normal distribution with the mean equal to zero and standard
* deviation equal to one.
*/
public NormalDistributionImpl(){
this(0.0, 1.0);
}
/**
* Access the mean.
* @return mean for this distribution
*/
public double getMean() {
return mean;
}
/**
* Modify the mean.
* @param mean for this distribution
*/
public void setMean(double mean) {
this.mean = mean;
}
/**
* Access the standard deviation.
* @return standard deviation for this distribution
*/
public double getStandardDeviation() {
return standardDeviation;
}
/**
* Modify the standard deviation.
* @param sd standard deviation for this distribution
* @throws IllegalArgumentException if sd
is not positive.
*/
public void setStandardDeviation(double sd) {
if (sd <= 0.0) {
throw new IllegalArgumentException(
"Standard deviation must be positive.");
}
standardDeviation = sd;
}
/**
* For this disbution, X, this method returns P(X < x
).
* @param x the value at which the CDF is evaluated.
* @return CDF evaluted at x
.
* @throws MathException if the algorithm fails to converge; unless
* x is more than 20 standard deviations from the mean, in which case the
* convergence exception is caught and 0 or 1 is returned.
*/
public double cumulativeProbability(double x) throws MathException {
try {
return 0.5 * (1.0 + Erf.erf((x - mean) /
(standardDeviation * Math.sqrt(2.0))));
} catch (MaxIterationsExceededException ex) {
if (x < (mean - 20 * standardDeviation)) { // JDK 1.5 blows at 38
return 0.0d;
} else if (x > (mean + 20 * standardDeviation)) {
return 1.0d;
} else {
throw ex;
}
}
}
/**
* For this distribution, X, this method returns the critical point x, such
* that P(X < x) = p
.
*
* Returns Double.NEGATIVE_INFINITY
for p=0 and
* Double.POSITIVE_INFINITY
for p=1.
p
* @throws MathException if the inverse cumulative probability can not be
* computed due to convergence or other numerical errors.
* @throws IllegalArgumentException if p
is not a valid
* probability.
*/
public double inverseCumulativeProbability(final double p)
throws MathException {
if (p == 0) {
return Double.NEGATIVE_INFINITY;
}
if (p == 1) {
return Double.POSITIVE_INFINITY;
}
return super.inverseCumulativeProbability(p);
}
/**
* Access the domain value lower bound, based on p
, used to
* bracket a CDF root. This method is used by
* {@link #inverseCumulativeProbability(double)} to find critical values.
*
* @param p the desired probability for the critical value
* @return domain value lower bound, i.e.
* P(X < lower bound) < p
*/
protected double getDomainLowerBound(double p) {
double ret;
if (p < .5) {
ret = -Double.MAX_VALUE;
} else {
ret = getMean();
}
return ret;
}
/**
* Access the domain value upper bound, based on p
, used to
* bracket a CDF root. This method is used by
* {@link #inverseCumulativeProbability(double)} to find critical values.
*
* @param p the desired probability for the critical value
* @return domain value upper bound, i.e.
* P(X < upper bound) > p
*/
protected double getDomainUpperBound(double p) {
double ret;
if (p < .5) {
ret = getMean();
} else {
ret = Double.MAX_VALUE;
}
return ret;
}
/**
* Access the initial domain value, based on p
, used to
* bracket a CDF root. This method is used by
* {@link #inverseCumulativeProbability(double)} to find critical values.
*
* @param p the desired probability for the critical value
* @return initial domain value
*/
protected double getInitialDomain(double p) {
double ret;
if (p < .5) {
ret = getMean() - getStandardDeviation();
} else if (p > .5) {
ret = getMean() + getStandardDeviation();
} else {
ret = getMean();
}
return ret;
}
}