/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math.distribution; import java.io.Serializable; import org.apache.commons.math.MathException; import org.apache.commons.math.MaxIterationsExceededException; import org.apache.commons.math.special.Erf; /** * Default implementation of * {@link org.apache.commons.math.distribution.NormalDistribution}. * * @version $Revision: 617953 $ $Date: 2008-02-02 22:54:00 -0700 (Sat, 02 Feb 2008) $ */ public class NormalDistributionImpl extends AbstractContinuousDistribution implements NormalDistribution, Serializable { /** Serializable version identifier */ private static final long serialVersionUID = 8589540077390120676L; /** The mean of this distribution. */ private double mean = 0; /** The standard deviation of this distribution. */ private double standardDeviation = 1; /** * Create a normal distribution using the given mean and standard deviation. * @param mean mean for this distribution * @param sd standard deviation for this distribution */ public NormalDistributionImpl(double mean, double sd){ super(); setMean(mean); setStandardDeviation(sd); } /** * Creates normal distribution with the mean equal to zero and standard * deviation equal to one. */ public NormalDistributionImpl(){ this(0.0, 1.0); } /** * Access the mean. * @return mean for this distribution */ public double getMean() { return mean; } /** * Modify the mean. * @param mean for this distribution */ public void setMean(double mean) { this.mean = mean; } /** * Access the standard deviation. * @return standard deviation for this distribution */ public double getStandardDeviation() { return standardDeviation; } /** * Modify the standard deviation. * @param sd standard deviation for this distribution * @throws IllegalArgumentException if sd is not positive. */ public void setStandardDeviation(double sd) { if (sd <= 0.0) { throw new IllegalArgumentException( "Standard deviation must be positive."); } standardDeviation = sd; } /** * For this disbution, X, this method returns P(X < x). * @param x the value at which the CDF is evaluated. * @return CDF evaluted at x. * @throws MathException if the algorithm fails to converge; unless * x is more than 20 standard deviations from the mean, in which case the * convergence exception is caught and 0 or 1 is returned. */ public double cumulativeProbability(double x) throws MathException { try { return 0.5 * (1.0 + Erf.erf((x - mean) / (standardDeviation * Math.sqrt(2.0)))); } catch (MaxIterationsExceededException ex) { if (x < (mean - 20 * standardDeviation)) { // JDK 1.5 blows at 38 return 0.0d; } else if (x > (mean + 20 * standardDeviation)) { return 1.0d; } else { throw ex; } } } /** * For this distribution, X, this method returns the critical point x, such * that P(X < x) = p. *

* Returns Double.NEGATIVE_INFINITY for p=0 and * Double.POSITIVE_INFINITY for p=1.

* * @param p the desired probability * @return x, such that P(X < x) = p * @throws MathException if the inverse cumulative probability can not be * computed due to convergence or other numerical errors. * @throws IllegalArgumentException if p is not a valid * probability. */ public double inverseCumulativeProbability(final double p) throws MathException { if (p == 0) { return Double.NEGATIVE_INFINITY; } if (p == 1) { return Double.POSITIVE_INFINITY; } return super.inverseCumulativeProbability(p); } /** * Access the domain value lower bound, based on p, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p the desired probability for the critical value * @return domain value lower bound, i.e. * P(X < lower bound) < p */ protected double getDomainLowerBound(double p) { double ret; if (p < .5) { ret = -Double.MAX_VALUE; } else { ret = getMean(); } return ret; } /** * Access the domain value upper bound, based on p, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p the desired probability for the critical value * @return domain value upper bound, i.e. * P(X < upper bound) > p */ protected double getDomainUpperBound(double p) { double ret; if (p < .5) { ret = getMean(); } else { ret = Double.MAX_VALUE; } return ret; } /** * Access the initial domain value, based on p, used to * bracket a CDF root. This method is used by * {@link #inverseCumulativeProbability(double)} to find critical values. * * @param p the desired probability for the critical value * @return initial domain value */ protected double getInitialDomain(double p) { double ret; if (p < .5) { ret = getMean() - getStandardDeviation(); } else if (p > .5) { ret = getMean() + getStandardDeviation(); } else { ret = getMean(); } return ret; } }