
Distributed Web Search as a Stochastic Game

Rinat Khoussainov and Nicholas Kushmerick

Department of Computer Science, University College Dublin, Ireland
{rinat, nick}@ucd.ie

Abstract. Distributed search systems are an emerging phenomenon in Web search,
in which independent topic-specific search engines provide search services, and
metasearchers distribute user’s queries to only the most suitable search engines.
Previous research has investigated methods for engine selection and merging of
search results (i.e. performance improvements from the user’s perspective). We
focus instead on performance from the service provider’s point of view (e.g, in-
come from queries processed vs. resources used to answer them). We analyse a
scenario in which individual search engines compete for user queries by choos-
ing which documents (topics) to index. The challenge is that the utilities of an
engine’s actions should depend on the uncertain actions of competitors. Thus,
naive strategies (e.g, blindly indexing lots of popular documents) are ineffective.
We model the competition between search engines as a stochastic game, and pro-
pose a reinforcement learning approach to managing search index contents. We
evaluate our approach using a large log of user queries to 47 real search engines.

1 Introduction

Distributed heterogeneous search environments are an emerging phenomenon in Web
search. Consider a federation ofindependently controlledmetasearchers and many spe-
cialised search engines. The specialised search engines provide focused search services
in a specific domain (e.g. a particular topic). Metasearchers help to process user queries
effectively and efficiently by distributing them only to the most suitable search engines
for each query. Compared to the traditional search engines like Google, specialised
search engines (together) may provide access to arguably much larger volumes of high-
quality information resources, frequently called “deep” or “invisible” Web.

We envisage that such heterogeneous environments will become more popular and
influential. However, to unlock the benefits of distributed search for the users, there
must be an incentive for search engines to participate in such a federation, i.e. an op-
portunity to make money. Previous research has mainly targeted performance of such
environments from the user’s perspective (i.e. improved quality of search results). On
the other hand, a provider of search services is more interested in the utility of the ser-
vice compared to the cost of the resources used (e.g. the income from search queries
processed versus the amount of resources needed for answering those queries).

An important factor that affects a particular search engine’s performance in hetero-
geneous search environments iscompetitionwith other independently controlled search
engines. When there are many engines available, users will send queries to those that
would provide the best possible results. Thus, the service offered by one search engine

influences queries received by its competitors. Multiple search providers can be viewed
as participants in a search services market competing for user queries. We examine the
problem of performance-maximising behaviour for non-cooperative specialised search
engines in heterogeneous search environments. In particular, we analyse a scenario in
which independent topic-specific search engines compete for user queries by choosing
which documents (topics) to index.

EXAMPLE . Consider a heterogeneous environment with two search enginesA and
B having equal resource capabilities. Assume that users are only interested in either
“sport” or “cooking”, with “sport” being more popular. If A and B each decide to
index both “sport” and “cooking” (i.e. everything, like Google tries to do), they will
receive an equal share of all user queries. IfA decides to spend all its resources only on
“sport” while B stays on both topics,A will provide better search for “sport” thanB.
Then users will send queries on “sport” toA, and on ”cooking” toB. Therefore,A will
receive more queries (and so will have higher performance). If, however,B also decides
to index only “sport”, both search engines will compete only for the same queries and,
thus, will each receive even fewer requests than in the 2 previous cases.

While the search engines in a heterogeneous search environment are independent in
terms of selecting their content, they are not independent in terms of the performance
achieved. Actions of one search engine affect the queries received by its competitors,
and vice versa. The uncertainty about competitors as well as the potentially large num-
ber of competing engines make our optimisation problem difficult. For example, in one
experiment (Sec. 4), several search engines that competed head-to-head for the most
popular topic were less profitable than an engine that cornered the market on another
topic that was less popular but ignored by the competition. This example illustrates that
naive strategies such as blindly indexing popular documents can be suboptimal.

We model the competition between specialised search engines as a partially observ-
able stochastic game, and exploit the concept of“bounded rationality” [8]. Bounded ra-
tionality assumes that decision makers are unable to act optimally in the game-theoretic
sense due to incomplete information about the environment and/or limited computa-
tional resources. We cast our problem as a reinforcement learning task, where the goal
of a specialised search engine is to learn a good behaviour strategy against given (po-
tentially sub-optimal) competitors. The effectiveness of our approach is evaluated in
a simulation environment. The simulator implements a simplified formalisation of the
problem and is driven by user queries submitted to over 47 existing search engines.

2 Problem Formalisation

The questions of optimal behaviour in computational markets have been researched ex-
tensively from both consumers and suppliers points of view [4, 5]. However, services
markets in heterogeneous Web search environments have a number of features requir-
ing new techniques. Given the complexity of the problem domain, attempting to make
our analysis 100% realistic from the very beginning is neither feasible nor reasonable.
Instead, we start with a simplified model. Our goal is to select an approach that allows
us in principle to factor more realistic details into our models in future.

Performance metric. We adopt an economic view on search engine performance.
Performance is a difference between the value (utility) of the search service provided
and the cost of the resources used to provide the service. The value of a search service
is a function of the user queries processed. The cost structure in an actual search engine
may be quite complicated involving many categories, such as storage, crawling, index-
ing, and searching. We use the following formula for the search engine performance:
P = α1Q−α2QD−α3C−α4D, whereQ is the number of queries received in a given
time interval,D is the number of documents in the engine’s index,C is the number of
new documents added to the index during the given time interval, andαx are constants.

α1Q represents the service value: if the price of processing one search request for
a user isα1, thenα1Q would be the total income from service provisioning.α2QD
represents the cost of processing search requests. Ifx amount of resources is sufficient
to processQ queries, then we need2x to process twice as many queries in the same
time. Similarly, twice as many resources are needed to search twice as many documents
in the same time. Thus, the amount of resources can be expressed asα2QD, where
α2 reflects the resource costs.α3C is the cost of crawling and indexing new docu-
ments. While the cost of indexing new documents is indeed proportional to the number
of the documents added, the cost of crawling can vary between documents. Here, we
rather assume an average crawling cost. Finally,α4D is the cost of document storage
and maintenance. This includes storing a copy of the document as well as keeping the
document description up-to-date.

We assume that all search engines use the sameαx constants when calculating their
performance. Having the sameα2–α4 reasonably assumes that the cost of resources
(CPU, memory, network) per “unit” is the same for all search engines. Having the same
α1 assumes, perhaps unrealistically, that the search engines choose to charge users the
same amount per query. We leave to future work the optimisation problem in environ-
ments where engines may have different service pricing.

Engine selection model.We use a very generic model of metasearch component,
so we can abstract from implementation details or particular metasearch algorithms.
Essentially, we assume that users would like to send queries to the search engine(s)
that contain the most relevant documents to the query, and the more of them, the better.
The ultimate goal of the metasearcher is to select for each user query search engines
that maximise the results relevance, while minimising the number of engines involved.
The existing research in metasearch (e.g. [3]), however, does not go much further than
simply ranking search engines. We assume that the query is always forwarded to the
highest rankedsearch engine. In case several search engines have the same top rank,
one is selected at random.

The ranking of search engines is based on the expected number of relevant docu-
ments that are indexed by each engine. The enginei that indexes the largest expected
number of documentsNRq

i relevant to queryq will have the highest rank. We apply a
probabilistic information retrieval approach to assessing relevance of documents [10].
For each documentd, there is a probabilityPr(rel |q, d) that this document will be con-
sidered by the user as relevant to queryq. In this case,NRq

i =
∑

d∈i Pr(rel |q, d),
whered ∈ i iterates over the documents indexed by enginei. If Pr(rel |q1, d) =
Pr(rel |q2, d),∀d then queriesq1 andq2 will look the same from both the metasearcher’s

and search engine’s points of view, even thoughq1 6= q2. Therefore, all queries can be
partitioned into equivalence classes with identicalPr(rel |q, d) functions. We call such
classestopics. We assume that there is a fixed finite set of topics and queries can be
assigned to topics. One way to approximate topics in practice would be to cluster user
queries received in the past and then assign new queries to the nearest clusters.

Engine selection for “ideal” crawlers. Assume that users only issue queries on a
single topic. We will see later how this can be extended to multiple topics. To receive
queries, a search engine needs to be the highest ranked one for this topic. Given an index
sizeD, enginei would like to index a set ofD documents with the largest possibleNRi

(expected number of documents relevant to the topic).
Search engines use topic-specific (focused) Web crawlers to find documents to in-

dex. Since it is very difficult to model a Web crawler, we assume that all search engines
have “ideal” Web crawlers which for a givenD can find theD most relevant docu-
ments on a given topic. Under this assumption, two search engines indexing the same
number of documentsD1 = D2 will have NR1 = NR2. Similarly, if D1 < D2, then
NR1 < NR2 (if all documents havePr(rel |d) > 0). Therefore, the metasearcher will
forward user queries to the engine(s) containing the largest number of documents.

This model can be extended to multiple topics, if we assume that each document
can only be relevant to a single topic. In this case, the state of a search engine can be
represented by the number of documentsDt

i that enginei indexes for each topict. A
query on topict will be forwarded to the enginei with the largestDt

i .
Decision making process.The decision making process proceeds in series of fixed-

length time intervals. For each time interval, search engines simultaneously and inde-
pendently decide on how many documents to index on each topic. They also allocate
the appropriate resources according to their expectations for the number of queries that
users will submit during the interval (incurring the corresponding costs). Since engines
cannot have unlimited crawling resources, we presume that they can only do incremen-
tal adjustments to their index contents that require the same time for all engines. The
users submit queries during the time interval, which are allocated to the search engines
based on their index parameters(Dt

i) as described above. Then the process repeats.

Let Q̂t
i be the number of queries on topict that, according to expectations of search

enginei, the users will submit. Then the total number of queries expected by enginei
can be calculated aŝQi =

∑
t:Dt

i>0 Q̂t
i. Obviously, we only expect queries for those

topics, for which we index documents (i.e. for whichDt
i > 0). We assume that engines

always allocate resources for the full amount of queries expected, so that in case they
win the competition, they will be able to answer all queries received. Then the cost of
resources allocated by enginei can be expressed asα2Q̂iDi − α3Ci − α4Di, where
Di =

∑
t Dt

i is the total number of documents indexed by enginei, andCi =
∑

t Ct
i

is the total number of documents added to the engine’s index in this time interval. For
the given resource allocation,̂Qi will be the total number of queries that enginei can
process within the time interval (its query processing capacity).

The number of queries on topict actually forwardedto enginei (presuming that
Dt

i > 0) can be represented asQt
i = 0 if enginei is ranked lower than its competitors

(i.e. ∃j,Dt
i < Dt

j), andQt
i = Qt/|K| if i is in the set of the highest-ranked engines

K = {k : Dt
k = maxj Dt

j}. Qt is the number of queries on topict actually sub-

mittedby the users. The total number of queries forwarded to search enginei can be
calculated asQi =

∑
t:Dt

i>0 Qt
i. We assume that if the search engine receives more

queries than it expected (i.e. more queries than it can process), the excess queries are
simply rejected. Therefore, the total number of queries processed by search enginei
equals tomin(Qi, Q̂i). Finally, performance of enginei over a given time interval can
be represented as follows:Pi = α1 min(Qi, Q̂i) − α2Q̂iDi − α3Ci − α4Di. Note
that even if an engine wins in the competition, its performance decreases as the index
grows, and eventually becomes negative. This effect accords with the intuition that a
huge index must eventually cost more to maintain than can ever be recovered by an-
swering queries, and serves to justify our economic framework for analysing optimal
search engine behaviour.

Decision making as a stochastic game.The decision making process can be mod-
elled as a stochastic game. Astochastic game(SG) [2] is a tuple〈n, S,A1...n, T, R1...n〉,
wheren is the number of decision makers (players),S is a set of game states,Ai is
a set of actions for playeri, T is a transition functionS × A × S → [0, 1] (where
A = A1 × ... × An), andRi : S × A → R is a reward function for playeri. SGs are
very similar to Markov Decision Processes (MDPs) except there are multiple decision
makers and the next state and rewards depend on the joint action of the players.

In our case, players are search engines, the state of the game at stagek is defined by
the state of the indices of all search engines((Dt

1(k)), ..., (Dt
n(k))) and by time (which

determines user queries at the given stage). A player’s actionai(k) ∈ Ai is a vector
(at

i(k)) of index adjustments for each topict. The following index adjustmentsat
i are

possible:Grow (increase the number of documents indexed on topict by one);Same
(do not change the number of documents on topict); andShrink(decrease the number
of documents on topict by one). The reward to playeri is calculated using the formula
for Pi, whereCt

i = 1 if at
i(k) in this time interval was “Grow”, andCt

i = 0 otherwise.

Strategies and observations.A player’s strategy (policy) in the game is a function
that maps a history of the player’s current (and possibly past) observations of the game
to a probability distribution over player’s actions. In our SG, a player’s observations
consist of two parts: observations of the state of its own search engine and, observations
of the opponents’ state. ForT topics, the player’s inputs consist ofT observations of
the state of its own search engine (one for each topic) andT observations of the relative
positions of the opponents (one per topic), i.e.2T observations in total.

The observations of its own state reflect the number of documents in the search
engine’s index for each topict. We do not assume that search engines know the contents
of each other’s indices. Instead, observations of the opponents’ state reflect the relative
position of the opponents in the metasearcher rankings, which indirectly gives the player
information about the states of the opponents’ index. The following three observations
are available for each topict: Winning– there are opponents ranked higher for topict
than our search engine (i.e. they index more documents on the topic than we do);Tying
– opponents have either the same or a smaller rank for topict than our search engine
(opponents index the same or a smaller number of documents on the topic); andLosing
– the rank of our search engine for topict is higher than opponents (opponents index
less documents on the topic than we do). How can a player know relative rankings of
its opponents? It can send a query on the topic of interest to the metasearcher (as a

search user) and request a ranked list of search engines for the query. We also assume
that players can obtain from the metasearcher information (statistics) on the queries
previously submitted by user. This data are used in calculation of the expected number
of queries for each topiĉQt

i. In particular, the number of queries on topict expected by
enginei at stagek equals to the number of queries on topict submitted by users at the
previous stage (i.e.̂Qt

i(k) = Qt(k − 1)).

3 The COUGAR Approach

Optimal behaviour in an SG is in general opponent-dependent: to select their future ac-
tions, players need to know future opponents’ strategies. Nash equilibrium from game
theory [6, 2] provides a way to resolve this uncertainty about opponents: if players agree
to play a Nash equilibrium, then they do not have incentive to unilaterally deviate (thus
they become certain about each other’s future actions). Agreeing to play a Nash equi-
librium, however, is problematic in games with multiple equilibria (which is frequently
the case). There is a large body of research on equilibrium selection in game theory.
Ultimately, it requires characterising all Nash equilibria of a game, which is NP-hard
even given complete information about the game [1]. These results and the possibility
that players may not have complete information lead to the idea of “bounded rational-
ity”, when players are limited in their abilities to make optimal decisions. Our goal is
to learn a strategy that performs well against the given opponents rather than trying to
calculate some equilibrium behaviour.

Learning in SGs have been studied extensively in game theory and machine learn-
ing. However, not many techniques are applicable in our problem domain, where we
may face both partial observability and evolving opponents. We propose to use a re-
cent reinforcement learning algorithm called GAPS (which stands forGradientAscent
for Policy Search) [7]. In GAPS, the learner plays a parameterised strategy represented
by a non-deterministic Moore automaton, where the parameters are the probabilities of
actions and state transitions. GAPS implements stochastic gradient ascent in the space
of policy parameters. After each learning trial, parameters of the policy are updated by
following the reward gradient.

GAPS has a number of advantages important for our problem domain. Unlike model-
based reinforcement learning algorithms, GAPS does not attempt to build a model
of the game or the opponents from the interaction experience, and thus cope with
partial observability and to scale well with the number of opponents. The policies
learned by GAPS can be both non-deterministic and state-full. The ability to play
non-deterministic policies means that GAPS can potentially achieve the optimal perfor-
mance in the games where only mixed (non-deterministic) strategy equilibria exist [6].
Learning state-full policies can be advantageous in partially observable settings [9].
Finally, GAPS scales well to multiple topics by modelling decision-making as a game
with factored actions (where action components correspond to topics). The action space
in such games is the product of factor spaces for each action component. GAPS, how-
ever, allows us to reduce the learning complexity: rather than learning in the product
action space, separate GAPS learners can be used for each action component. It has
been shown that such distributed learning is equivalent to learning in the product action

space [7]. As with most gradient-based methods, the disadvantage of GAPS is that it is
only guaranteed to find a local optimum.

We call a search engine that uses the proposed approach COUGAR (COmpetitor
Using GAPS AgainstRivals). The COUGAR controllers are represented by a set of
non-deterministic Moore automata(M t), one for each topic, functioning synchronously.
Inputs of each automatonM t are game observations for topict. Outputs of each au-
tomaton are actions changing the number of documentsDt

i indexed for topict. The
resulting action of the controller is the product of actions (one for each topic) produced
by each of the individual automata.

Training COUGAR is performed in series of learning trials. Each learningtrial
consists of 100 days, where each day corresponds to one stage of the SG played. The
search engines start with empty indices and then, driven by their controllers, adjust their
index contents. In the beginning of each day, engine controllers receive observations and
simultaneously produce control actions (change their document indices). Users issue a
stream of search queries for one day. The metasearcher distributes queries between the
engines according to their index parameters on the day, and the search engines collect
the corresponding rewards. For the next day, the search engines continue from their
current states, and users issue the next batch of queries. The resulting performance in
the whole trial is calculated as a sum of discounted rewards from each day. After each
trial, the COUGAR controller updates its strategy using the GAPS algorithm. That is,
the action and state transition probabilities of the controller’s automata are modified
using the payoff gradient (see [7] for details).

To simulate user search queries, we used HTTP logs obtained from a Web proxy of
a large ISP and extracted queries to 47 well-known search engines. The total number
of queries extracted was 657,861 collected over a period of 190 days, and we used a
100-day subset of these queries in our simulations. We associated topics with search
terms in the logs. To simulate queries forT topics, we extracted theT most popular
terms from the logs.

4 Experimental Results

Our experiments consist of two parts. In the first part, we evaluate the performance
of COUGAR against various fixed opponents. In the second part, we test COUGAR
against evolving opponents, which in our case are also COUGAR learners. In the ex-
periments with fixed opponents, we simulated 2 search engines competing for 2 topics.

Fixed opponents: “Bubble”. The “Bubble” strategy tries to index as many docu-
ments as possible without any regard to what competitors are doing. From our perfor-
mance formula, such unconstrained growing leads eventually to negative performance.
Once the total reward falls below a certain threshold, the “Bubble” search engine goes
bankrupt (it shrinks its index to 0 documents). This process imitates the situation in
which a search provider expands its business without paying attention to costs, even-
tually runs out of money, and quits. An intuitively sensible response to the “Bubble”
strategy would be to wait until the bubble “bursts” and then come into the game alone.
That is, a competitor should not index anything while the “Bubble” grows and should
start indexing a minimal number of documents once “Bubble” goes bankrupt.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 20000 40000 60000 80000 100000

T
ria

l r
ew

ar
d

Trials

COUGAR
Wimp

-2000

 0

 2000

 4000

 6000

 8000

 10000

 0 20000 40000 60000 80000 100000

T
ria

l r
ew

ar
d

Trials

COUGAR
Bubble

a) b)

Fig. 1.Learning curves: (a) COUGAR vs “Bubble”; (b) COUGAR vs “Wimp”.

Fig. 1a shows how COUGAR’s performance improved during learning. Once COUGAR
reached a steady performance level, its resulting strategy was evaluated in a series of
testing trials. Analysis of a sample testing trial shows that COUGAR has learned to wait
until “Bubble” goes bankrupt, and then to win all queries for both topics.

Fixed opponents: “Wimp”. The “Wimp” controller used a more intelligent strat-
egy. Consider it first for the case of a single topic. The set of all possible document index
sizes is divided by “Wimp” into three non-overlapping sequential regions: “Confident”,
“Unsure”, and “Panic”. The “Wimp’s” behaviour in each region is as follows:Confident
– the strategy in this region is to increase the document index size until it ranks higher
than the opponent. Once this goal is achieved, ”Wimp” stops growing and keeps the
index unchanged;Unsure– in this region, “Wimp” keeps the index unchanged, if it is
ranked higher or the same as the opponent. Otherwise, it retires (i.e. reduces the index
size to 0);Panic– “Wimp” retires straight away.

An overall idea is that “Wimp” tries to outperform its opponent while in the “Con-
fident” region by growing the index. When the index grows into the “Unsure” region,
“Wimp” prefers retirement to competition, unless it is already winning over or tying
with the opponent. This reflects the fact that the potential losses in the “Unsure” region
(if the opponent wins) become substantial, so “Wimp” does not dare to risk.

To generalise the “Wimp” strategy to multiple topics, it was modified in the fol-
lowing way. When assessing its own index size, “Wimp” was simply adding the doc-
uments for different topics together. Similarly, when observing relative positions of
the opponent, it was adding together ranking scores for different topics. Finally, like
the multi-topic “Bubble”, “Wimp” was changing its index size synchronously for each
topic. Common sense tells us that one should behave aggressively against “Wimp” in
the beginning (i.e. index more than “Wimp”), to knock him out of competition, and then
enjoy the benefits of monopoly (i.e. index minimum possible number of documents).
This is what COUGAR has learned to do. Fig. 1b also presents the learning curve.

Policy complexity vs. performance.As pointed out earlier, the ability of COUGAR
to learn non-deterministic and state-full policies can be a potential advantage under
partial observability. A policy with more states can represent more complex (and po-
tentially more optimal) behaviours. To analyse the effects of the policy complexity on
the performance achieved, we evaluated COUGAR controllers with different number of

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 0 20000 40000 60000 80000 100000 120000

T
ria

l r
ew

ar
d

Trials

5 states

4 states

3 states

2 states

-2000

 0

 2000

 4000

 6000

 8000

 10000

0 100 200 300 400 0 100 200 300

T
ria

l r
ew

ar
d

Trials (thousands)

COUGAR 1
COUGAR 2

Fixed COUGAR 1
Challenger

b)a)

Fig. 2. (a) “Wimp” vs COUGAR with different number of states; (b) COUGAR in self play:
learning (left), evaluation (right).

states against the “Wimp” opponent. Fig. 2a demonstrates that indeed COUGARs with
more states performed better, though in most cases learned more slowly.

Performance bounds.While COUGAR was superior to both fixed strategy oppo-
nents, an interesting question is how its performance relates to the maximum and min-
imum values obtainable for the given opponents. To asses this, we evaluated “Bubble”
and “Wimp” against the corresponding best-case (omniscient) and worst-case strate-
gies. COUGAR has achieved 99.8% of the optimal performance against “Bubble” and
88.6% against “Wimp”. These facts not only show COUGAR’s near-optimality but
also demonstrate the fact that such performance was not a result of dumb opponents:
COUGAR could have performed much worse.

Evolving opponents: COUGAR in self play.It is not guaranteed from the theo-
retical point of view that the gradient-based learning will always converge in self play.
In practice, however, we observed that learners converged to relatively stable strategies.
The simulation setup was the same as for the fixed opponent experiments. We trained
two COUGAR learners, each using a 3-state GAPS policy, in self play in a scenario
with two topics. The players decided to split the query market: each search engine spe-
cialised on a different topic. The winner happened to pick the more popular topic.

As previously mentioned, a policy learned by COUGAR in self-play is, in gen-
eral, only locally optimal against the policies simultaneously learned by its opponents.
A question we are interested in is how well such locally optimal policy can perform
against an unbiased COUGAR learner. To test this, we fixed the strategy of the winner
from self play, and trained another COUGAR against it. We can envisage a possible
failure of the winner’s policy, if it did not learn to compete well for the more popular
topic (because of its opponent), and learned not to compete for the less popular topic.
Then an unbiased challenger might be able to capture queries for both topics. Evalua-
tion against a 3-state COUGAR challenger showed, however, that the performance of
the winner’s policy is quite stable. Fig. 2b shows the performance of the search engines
during self play (left) and evaluation (right). The fixed COUGAR achieves the same
performance against the challenger as it had in self play.

Evolving opponents: scaling up.An important advantage of GAPS is the ability
to handle well multiple topics by modelling decision-making as a game with factored

actions. To analyse the scalability of our approach with the number of topics, we simu-
lated 10 COUGAR learners competing in a scenario with 10 different topics. Analysis
showed that, similarly to the case of 2 learners and 2 topics, they decided to split the
query market. An important detail is that more popular topics attracted more search
engines. This confirms that the market split was really profit-driven and demonstrates
COUGAR’s “economic thinking”. However, the most profitable engine actually spe-
cialised on the relatively unpopular topic three, while the four engines that competed
for the two most popular topics ended up earning substantially less money.

5 Conclusions

Stochastic games provide a convenient theoretical framework for modelling competi-
tion between search engines in heterogeneous Web search systems. However, finding
optimal behaviour strategies in stochastic games is a challenging task, especially in par-
tially observable games, and also when other players may evolve over time. We demon-
strated that reinforcement learning with state-full policies seems an effective approach
to the problem of managing the search engine content. Our adaptive search engine,
COUGAR, has shown the potential to derive behaviour strategies allowing it to win in
the competition against non-trivial fixed opponents, while policies learned in self-play
were robust enough against evolving opponents (other COUGARs in our case).

We do not claim to provide a complete solution for the problem here, but we be-
lieve it is the promising first step. Clearly, we have made many strong assumptions in
our models. One future direction will be to relax these assumptions to make our simu-
lations more realistic. In particular, we intend to perform experiments with real docu-
ments and using some existing metasearch algorithm. We currently assume that users
are insensitive to the quality of the search results; we intend to extend our metasearch
and service pricing models to account for user satisfaction. Another direction would be
to further investigate the issues of the learning convergence and performance robustness
in self-play, and against other learners.

References

1. V. Conitzer and T. Sandholm. Complexity results about Nash equilibria. Technical Report
CMU-CS-02-135, Carnegie Mellon University, 2002.

2. J. Filar and K. Vrieze.Competitive Markov Decision Processes. Springer Verlag, 1997.
3. L. Gravano and H. Garcia-Molina. GlOSS: Text-source discovery over the Internet.ACM

Trans. on Database Systems, 24(2):229–264, 1999.
4. A. Greenwald, J. Kephart, and G. Tesauro. Strategic pricebot dynamics. InProc. of the 1st

ACM Conf. on Electronic Commerce, pages 58–67, 1999.
5. J.Hu and M. Wellman. Learning about other agents in a dynamic multiagent system.Cogni-

tive Systems Research, 2, 2001.
6. M. Osborne and A. Rubinstein.A Course in Game Theory. The MIT Press, 1999.
7. L. Peshkin.Reinforcement Learning by Policy Search. PhD thesis, MIT, 2002.
8. A. Rubinstein.Modelling Bounded Rationality. The MIT Press, 1997.
9. S. Singh, T. Jaakkola, and M. Jordan. Learning without state-estimation in partially observ-

able MDPs. InProc. of the 11th Intl. Conf. on Machine Learning, 1994.
10. C. J. van Rijsbergen.Information Retrieval. Butterworths, 2nd edition, 1979.

