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Abstract. In this paper we describe the architecture of the MIND system for fed-
erating multimedia digital libraries. MIND integrates heterogeneous, multimedia
non-co-operating digital libraries and gives the user the impression of a single
coherent system. The architecture consists of a single mediator and one proxy
(composed of several proxy components) for every connected library. These spe-
cialised, distributed components are connected via SOAP. This architecture with
clearly defined responsibilities perfectly fits the needs of a distributed research
project, and allows for integrating different platforms and programming languages.

1 Introduction

Today, people have routine access to a huge number of heterogeneous and distributed
digital libraries. To satisfy an information need, three different steps have to be per-
formed:
1. Relevant libraries have to be selected (“resource selection”).
2. The information need has to be reformulated for every library w. r. t. its schema

(“schema mapping”) and query syntax.
3. The results from the selected libraries have to merged (“data fusion”).

This is an ineffective manual task for which accurate tools are desirable.
MIND (being developed in an EU project) is an end-to-end solution for federated

digital libraries which covers all these issues. We started from information retrieval
approaches which focus on retrieval quality, but mostly only consider monomedial and
homogeneous sources. We extended these approaches for dealing with different kinds
of media (text, facts, images and transcripts of speech recognition) as well as handling
heterogeneous libraries (e.g. with different schemas). Another innovation is that MIND
also considers non-co-operating libraries which only provide the query interface.

2 The MIND architecture

The goal of the MIND project was to develop methods and a prototype for integrating
heterogeneous multimedia digital libraries (DLs). Some of these DLs might co-operate
with the project, but most of them won’t. Heterogeneity appears in different forms:
query languages (e.g. proprietary languages, SQL, XQuery, XIRQL), communication
protocols (HTTP GET/POST, Z39.50, SOAP), document models (relational, DOM) and
the logical and semantic document structure (defined by schemas).
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Fig. 1.MIND basic architecture

The MIND architecture reflects these three characteristics (heterogeneity, multime-
dia, non-co-operating DLs). It follows the standard structure with one mediator (called
“dispatcher” in MIND) and wrappers (“proxies”) for every library. The proxies extend
the functionality of the libraries; they deal with the heterogeneity problem, and they
give the dispatcher the required information not provided by the libraries. The only re-
quirement for the DLs is that we can issue queries to it and receive documents, and that
a DL client can specifiy the number of documents to be returned.

With this architecture, the dispatcher “only” has to deal with co-operating proxies.
On top of the dispatcher, a “data fuser” merges the results together. The basic compo-
nents of this architecture are depicted in Fig. 1.

The proxies consists of several sub-components (the grey components in Fig. 1 are
media-specific):

Proxy control component: This component is called by the dispatcher (actually, it is
the only one used by the dispatcher). The major job of this component is to call the
other components, and to combine their results.

Description construction: This media-specific component is used for creating resource
descriptions. Resource descriptions store textual descriptions of the correspond-
ing library, e.g. its schema and statistical metadata (e.g. average term indexing
weights).

Quality estimation: This media-specific component is responsible for estimating the
number of relevant documents in the corresponding DL w. r. t. its media type. This
is a sub-task of the resource selection problem (see Sec. 6).



Schema mapping: This media-specific component translates between the user schema
and the DL schema: Queries have to be transformed from the user schema into the
DL schema, and documents have to be transformed back from the DL schema into
the user schema (see Sec. 4).

DL interface: The interface component is the connection from the proxy to the under-
lying library. Thus, this component provides a uniform access API.

Using external resource descriptions allows for reusing standard implementations of
components (despite the DL interface, which has to be re-implemented for every proxy).
Nevertheless, this approach is flexible so that different proxy implementations can be
used as well.

We decided to develop a distributed system, where the components can reside on
different machines. Communication is done via SOAP (see Sec. 3). This has several
advantages over a monolithic architecture:
1. Components can be developed easily by the responsible partner, and integration is

quite easy, without the problem of maintaining the sources and compiled programs
on different sites.

2. Components can run on a dedicated computer which provides required resources
(computation power, additional software or data sources like a thesaurus).

3. Different hardware, operating systems and programming languages can be used.
4. Load balancing and replication can improve the system scalability and reliability.

The disadvantage is that communication is more complex than in a homogeneous and
centralised environment.

Concluding, we set up an architecture which shifted the main functionality into the
“smart” proxies which extend the underlying DLs. The proxies also solve the hetero-
geneity problem; the dispatcher only sees a collection of homogeneous, co-operating
libraries which adhere to a standard protocol (i.e., the MIND protocol).

3 Communication with SOAP

The hierarchical MIND communication structure can be implemented with simple pro-
cedure calls in a centralised environment. But as the MIND components are distributed,
this solution has to be extended to remote procedure calls (RPC).

When the development of the prototype started in 2001, we decided to use SOAP1.
In contrast to other solutions like XML-RPC2, the W3C language SOAP now is the
standard for connecting components (so called “web services”).

SOAP messages are encoded in XML and typically transmitted via HTTP. The
SOAP service has to process the request XML document and to send back a “response”
XML document. The major advantage of this text-based SOAP is that it improves in-
teroperability between different platforms and languages. In MIND, SOAP components
are implemented in C++, Perl and Java.

The XML request document contains the envelope (the root element) and the body
element (which contains the payload as its immediate child element). The payload

1 http://www.w3.org/TR/SOAP/
2 http://www.xmlrpc.com/



(body) element is identified by a fully qualified name, where the component name is the
namespace URI and the procedure name is the local name. In MIND, the component
name has the form “urn:NAME”, e.g. “urn:dispatcher.Dispatcher” for the dispatcher
or “urn:proxy-estimation-text.Google” for the text-specific quality estimation compo-
nent of the Google proxy. Coding the service name into the XML message allows for
attaching several components to one URL (i.e., to one HTTP server).

To reduce administration overhead, we wanted a central mapping from component
names to URLs, the “registry”. So, only the URL of this additional SOAP service has
to be stored on the client (e.g. in a configuration file). For replication, more than one
URL can be specified for the same service. For improved efficiency, clients should
(and do) cache the URLs retrieved from the registry, so that the client does not have to
query the registry before every SOAP call. As the registry is only used for the SOAP
communication, it is not included in the original architecture (see Fig. 1).

Most of the MIND code is written in Java, using the Apache SOAP implementa-
tion.3 Here, a client calls a “router” servlet, which processes the incoming SOAP mes-
sages, converts the payload into Java objects (which specialised serialiser classes), calls
the correct object (identified by the SOAP component name), and converts the result
back into XML. For simplicity, we made the SOAP protocol transparent by introduc-
ing “stub” classes which implements the same interface as the component, but whose
methods call the component’s method via SOAP (as in RMI). This proved to be good,
as then only the Java method in the stub has to be called, making the SOAP protocol
transparent. This communication process is depicted in figure 2.

DispatcherStub Tomcat/Apache SOAPUI DispatcherImpl
Java JavaXML       (SOAP)

Fig. 2.MIND communication process in Java

As SOAP is an interoperability protocol, Java clients can call services written in
another programming language, and vice versa.

The query-based sampling component (see section 5) is C++ software (from the
Lemur4 toolkit). Within the project, it has been extended so that it can be integrated in
MIND. The query-based sampling component uses the gSOAP toolkit.5

4 Heterogeneous schemas

In this section, we describe and discuss the transformation of queries and documents
between heterogeneous schemas.

3 http://xml.apache.org/soap/
4 http://www-2.cs.cmu.edu/~lemur/
5 http://www.cs.fsu.edu/~engelen/soap.html



4.1 Query and document transformation

In heterogeneous digital libraries, each DL uses its own schema. Thus, queries have to
be transformed from the user schema into the DL schema, and documents from the DL
schema into the user schema.

In MIND, we employed a combined approach of DAML+OIL, probabilistic Data-
log and XSLT [5]. The goal is to define schema mapping rules in a descriptive, textual
way. A schema mapping rule specifies how a given attribute in one schema can be trans-
formed into another attribute w. r. t. another schema; the attribute can be renamed, and
the value can be modified. The latter is important for facts, where e.g. dates have to the
transformed between different formats. Usually, text attributes are not modified (only
renamed if necessary). MIND queries and documents are modelled in DAML+OIL [2],
which has the power to become the standard ontology language. One disadvantage of
DAML+OIL is that it lacks rules so far, thus DAML+OIL models are converted into
probabilistic Datalog [4], and schema mapping rules are stated in this predicate logic
language:
0.7 s2#author(D,V) :- s1#au(D,V).
0.3 s2#editor(D,V) :- s1#au(D,V).

This specifies thatau has to be transformed intoauthor with probability 0.7, and
into editor with probability 0.3.

On the implementation level, the pDatalog rules are automatically converted into
XSLT style-sheets. These style-sheets operate on XML serialisations of DAML+OIL
models (of the underlying MIND queries and documents).

For images, this text based approach does not work, so the schema mappings are
implemented manually in this case.

4.2 Implementation in MIND

The proxy transforms a user query into a DL query when necessary, thus hiding het-
erogeneity to the dispatcher. In other words, the dispatcher never notices that the proxy
internally uses another schema. In a similar way, documents are transformed automat-
ically from the DL schema into the user schema before they are returned to the dis-
patcher.

The proxy splits the query (the document, respectively) into media-specific frac-
tions. Each fraction is forwarded to the corresponding media-specific schema mapping
component. For text, facts and speech, the query (document) fraction is modelled in
DAML+OIL and serialised in XML. Then, it is transformed into the targeted schema
via XSLT. The resulting XML document is parsed, converted to new internal objects for
the query (document), and returned to the proxy control component. There, the trans-
formed fractions are recombined. For images, schema transformation with XSLT does
not work, so it is performed in DL-specific program code.

4.3 Advantages and disadvantages of this approach

As images are handled in a way different to that of text, facts and speech, our distributed
architecture with media-specific schema mapping components helps us in solving this
problem.



However, we noticed that the differences for the three other media types are smaller
than expected before. Thus, one schema mapping component for text, facts and speech
would be sufficient and more efficient.

Our descriptive approach with probabilistic Datalog rules and the standard trans-
formation language XSLT for processing queries and document allows for storing all
library-specific information in textual files. Thus, only one standard implementation is
required for all proxies.

5 Acquisition of resource descriptions

This section describes and discusses how metadata of a library (“resource descriptions”)
are acquired in MIND.

5.1 Query-based sampling

The second area where resource descriptions are used (besides the schema mapping
task) is resource selection. For this, the resource descriptions have to contain data (e.g.
average indexing weights) which can be used for estimating the retrieval quality of
a DL. As MIND integrates non-co-operating digital libraries which only provide the
query interface, the proxies cannot simply request resource descriptions from the DLs.

Thus, we employed the technique of query-based sampling [1]. An initial single-
term query is sent to the library, and the top-ranked documents (typically four) are
retrieved and added to the document sample. Then, a random term is chosen from the
sample and used as the next query. This process is iterated until the sample converges,
or a specified number of documents is retrieved. Finally, the sample can be used for ex-
tracting statistical metadata. So, with reasonably low costs (i.e., number of queries), an
accurate resource description can be constructed from samples of, e.g., 300 documents.

Although originally developed for the CORI resource selection algorithm, it can
be used for several other resource selection approaches (GlOSS, language models),
including the decision-theoretic framework used in MIND.

During query-based sampling, it is easy to measure the computation and communi-
cation time of the underlying DL for that query, and to add this to the resource descrip-
tion. These measurements are used later for estimating the costs w. r. t. time in resource
selection (see Sec. 6).

Query-based sampling is only possible for text. This means that the DL schema
must contain at least one text attribute, so that this attribute can be used for sampling.
Of course, the documents of the resulting sample documents can be used for deriving
resource descriptions for all schema attributes.

5.2 Implementation in MIND

Query-based sampling in included in the Lemur toolkit developed by UMass and CMU
and implemented in C++. For MIND, the query-based sampling part of Lemur has been
extended by the project partner CMU so that it can sample MIND proxies (i.e., the
query-based sampling part of Lemur can send SOAP calls to MIND proxies).



Query-based sampling is started with an external component, which issues a SOAP
call to the corresponding proxy control component. This component—the entry point
for all interaction with a proxy— calls a query-based-sampling component which con-
tains the Lemur code. This component then interacts with the proxy again for sampling
the underlying library.

5.3 Advantages and disadvantages of this approach

Query-based sampling in MIND is a good example for the advantages of using a dis-
tributed environment with a platform- and language-independent data exchange format
like SOAP: We were able to integrate C++ software into a Java-based environment
fairly easy. We were also able to handle calls in two directions: The proxy control com-
ponent (written in Java) calls the query-based sampling code (C++), which then has to
call iteratively the proxies for sampling the libraries.

The disadvantage is, of course, that we have to maintain and deploy another com-
ponent. Also, the sampling time increases due to a larger communication overhead, but
this does not matter for query-based sampling (which is done very infrequently).

6 Resource selection

In this section we briefly explain the MIND resource selection implementation.

6.1 Decision-theoretic resource selection

MIND employs the decision-theoretic framework for resource selection [7, 6]. The ba-
sic assumption is that we can assign specific retrieval expected costs (as the costs are
unknown in advance)ECi(si ,q) to each digital libraryDLi whensi documents are re-
trieved for queryq. The term “costs” is used in a broad way and covers different sources:

Effectiveness: Probably most important, a user is interested in getting many relevant
documents. Thus, the system has to estimate the expected numberE[r i(si ,q)] of
relevant documents in the result set whensi documents are retrieved from library
DLi for queryq. In MIND, two approaches are used. Both are based on estimations
of the probabilityPr(rel|q,d) that a documentd is relevant to the query for thes
top-ranked documents.

Time: This includes computation time at the library and communication time for de-
livering the result documents over the network. These costs are approximated by
fitting a simple affine linear cost function by measured response times.

Money: If a DL charges for its usage, this has to be specified manually. In MIND, we
only connect DLs which do not charge on a per-document basis.

A user can specify the importance of the different cost sources by user-defined cost
parameters. Thus, a user can specify her own selection policy (e.g. cheap and fast results
with a potentially smaller number of relevant documents). The expected costsECi(si ,q)
then is the weighted sum of the costs of the different sources.



If the user specifies (together with her query) the total numbern of documents
which should be retrieved, the task then is to compute an optimum solution, i.e. a vector
s= (s1,s2, . . . ,sm)T with |s| = ∑m

i=1si = n which minimises the overall costs.
The optimum selections can be computed by the algorithm presented in [3].

6.2 Implementation in MIND

In MIND, three components are involved in resource selection: the quality estimation
component in the proxy, the proxy control component and the dispatcher.

Corresponding to the MIND philosophy of proxies extending non-co-operating DLs,
costsEC(s,q) are estimated by the proxy. The optimum selection—based on the costs
of every proxy—can only be computed by the dispatcher.

For time and monetary costs, the MIND model uses simple approximations. These
costs can be computed in the media-independent proxy control component. The situa-
tion is more complex for relevancy costs: Here, the probabilities of relevancePr(rel|q,d)
have to be estimated.

As this estimation is data-type- and media-specific, it is delegated to the media-
specific quality estimation components. Thus, the query (already transformed from the
user schema into the DL schema) is split into media-specific sub-queries. Each sub-
queryqm is forwarded to the corresponding quality estimation component; the result
is a list of n probabilities of relevancePr(rel|qm,d) of the n top-ranked documents
(assumed that the user requestedn documents) w. r. t. the sub-query. Of course, each
estimator can choose its own method for deriving these probabilities, but all of them
require data from the resource descriptions (e.g. average indexing weights). After all,
they are combined in the proxy control component: the probabilities of relevance of the
first entries in each line are combined, then the probabilities of relevances of the second
entries, and so on.

6.3 Advantages and disadvantages of this approach

The MIND approach has a clear and natural separation of responsibilities: the media-
specific component estimates the probabilities of relevance w. r. t. media-specific sub-
queries, the proxy control component combines the probabilities and computes costs for
the different cost sources, and the dispatcher computes—based on the cost estimation
from all the proxies—an optimum selection.

In this decentralised approach of estimating retrieval quality, it is very easy to deal
with heterogeneous schemas: Each quality estimation component only has to deal with
one DL, and only sees queries in the DL schema. As the resource descriptions (and,
thus, the statistical metadata required for resource selection) are stored on the proxy
level, they are also separated from resource descriptions of other DLs, so heterogeneity
of schemas is not a problem at all.

However, this MIND approach also has two disadvantages:
1. Each proxy has to be called (if it runs on another machine than the dispatcher,

this means a SOAP call over the network), and each proxy has to query its own
resource description. In the current MIND implementation, most of the resource



description data is stored in a relational database management system, as this makes
it easier and more efficient when dealing with large data. However, this means that
every proxy has to issue at least one SQL command to the database. Thus, resource
selection in MIND is quite expensive.

2. The probabilities of relevance of the sub-queries have to be combined in the proxy
control component. As each list only containsn documents, we combine the first
probabilities, then the second and so on. However, the probabilities in the first ranks
do not necessarily belong to the same (the first) document. For a precise combina-
tion, the probabilities of relevance and document ids for all documents in the sample
are required; but this would lead to high communication costs in the proxy.

7 Alternative architectures

Obviously, the MIND architecture is a compromise between various requirements of
different types. Five other architectures could be considered as well:
1. A monolithic, centralised architecture without distributed components is faster (as

there is no communication time), but does not allow for replication. Furthermore,
it does not fit the needs of a distributed research project where each partner works
on separate research problems.

2. The MIND architecture could live with less components. E.g., the description con-
struction component could be fused with the quality estimation component, as they
are strongly related. In addition, the text-, fact- and speech-specific schema map-
pings components work exactly the same and thus could be fused. Quality estima-
tion for text differs from estimation for facts. However, for an increased estimation
quality, estimating and communicating probabilities of relevance for all documents
in the DL would be useful. Thus, one could also fuse these three media-specific
quality estimation components and deal with the differences inside this component.

3. Resource selection could be much faster if the costs were estimated in the dis-
patcher. Then, the relational database used in MIND could be queried only once,
and there would be no need for calling each associated proxy. Both would lead to
faster resource selection. The disadvantage is that it is more difficult to deal with
heterogeneous schemas: one would either transform the sample documents to the
standard schema and then create the resource description (which makes it difficult
and expensive to change the standard schema), or the resource descriptions for all
attributes have to be stored in one huge database table (which would decrease pro-
cessing time inside the database).

4. Communication in MIND is quite expensive due to the XML-based SOAP pro-
tocol. The client has to encode the internal objects into XML, the XML record
(which is much larger than the internal representation) has to be transmitted over
the network, and the service component has to parse the XML structure. Other na-
tive protocols on a binary basis (e.g. CORBA) would be more efficient, but it more
difficult to achieve interoperability between different platforms and programming
languages. In addition, CORBA cannot be operated over a firewall, which was used
in one of the project partner’s department. Another solution would be that the com-
ponents operate directly on the SOAP XML tree, without converting it to internal



objects. However, this would lead to a more expensive programming work, which
is not suitable for a prototype system which is developed in parallel with scientific
research.

5. Nowadays, peer-to-peer systems become popular. A peer-to-peer architecture is
more flexible than the MIND communication structure, removes control from any
single organisation, and makes it easier for new service providers to join the feder-
ation. We will deal with this kind of architecture in a forthcoming project.

8 Conclusion and outlook

In this paper we described the MIND architecture for heterogeneous multimedia fed-
erated digital libraries. MIND follows a highly distributed approach with components
for every distinct task. Communication is done via SOAP, which easily allows for in-
tegrating different platforms and programming languages. This architecture perfectly
fits the needs for a distributed project where each partner works on a different part of
the overall research problem, and where development is done in parallel to scientific
research.

In a latter project stage, it turned out that some components could be fused together,
but time constraints did not allow for doing so. Also, the overall system slows down
due to communication time. Thus, our architecture is a little bit oversized in the MIND
context. In a production system, the system could easily be adapted.

For similar projects, however, our architecture has the big advantage that is flexible
and extensible. So, new functionality can be added quite easily and in a natural way,
either in one of the existing components or in new ones.

In later versions of the system, we will downsize the architecture to the level actually
required. In a new project, we will extend our approach to peer-to-peer nets.
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