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1 Introduction: IR as inference

In the logical view on IR systems, retrieval is interpreted as implication [Rijs-
bergen 86]: Let d denote a document (represented as logical formula) and q a
query, then retrieval deals with the task of finding those documents which imply
the query, i.e. for which the formula d → q is true. Due to the intrinsic uncer-
tainty and vagueness of IR, we have to switch to uncertain inference. Using
a probabilistic approach, the probability P (d → q) that the implication goes
through should be computed as the conditional probability P (q|d), as pointed
out by Rijsbergen.
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Figure 1: P (d → q) vs. P (q → d)

As a simple example, assume that we have a probability space where terms
represent disjoint events, as shown in figure 1. If all terms are assumed to
be equiprobable, the left-hand example in this figure gives us a probability
P (d → q) = P (q|d) = 2/3. Later, Nie has shown [Nie 89] that in some cases,
it may be reasonable to consider also the implication P (q → d), which should
be defined according to Rijsbergen as P (d|q). Whereas the first implication
measures the exhaustivity of a document wrt. a query, the latter can be used
as a measure of specifity (see the example in figure 1).

In the following, we will show how language models relate to the concept
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of IR as uncertain inference. For this purpose, we use a specialization of the
uncertain inference approach, namely the probabilistic concept space (PCS)
model developed by Wong and Yao [Wong & Yao 95], and we show how some
of the language models proposed so far fit into this model.

2 The probabilistic concept space model

From a logical point of view, text retrieval models represent documents as sets of
(weighted) propositions. In order to set up a basic framework for these models,
Wong and Yao assume a concept space U consisting of a set of elementary,
disjoint concepts ci.

Any proposition p is a set of concepts, i.e. a subset of the concept space (p ⊆
U). Boolean combinations of propositions can be expressed as set operations
on this concept space.

In order to support probabilistic inference, a probability function P (.) over
U is defined, i.e. ∑

ci∈U

P (ci) = 1

Now queries and documents are treated as propositions as well, Considering
the probability function, we have

P (d) =
∑
ci∈d

P (ci)

P (q) =
∑
ci∈q

P (ci)

P (q ∩ d) =
∑

ci∈q∩d

P (ci)

P (d → q) = P (q|d) =
P (q ∩ d)

P (d)

P (q → d) = P (d|q) =
P (q ∩ d)

P (q)

The last two formulas show that the two implication directions only differ by
the normalization factor. We will exploit this fact below when we compare the
Ponte/Croft language model with Hiemstra’s.

Whereas text retrieval is based on terms, the PCS model uses concepts as
elementary propositions; thus, we have to define the relationship between terms
and concepts. A straightforward approach identifies each term with a concept;
following this idea, e.g. the vector space model can be explained in terms of
the PCS model. Alternatively, one can assume that terms are overlapping; this
approach forms the basis for explaining Boolean and fuzzy retrieval as well as
thwe probabilistic binary independence indexing and retrieval models. Since
language models assume probabilistic independence of terms, we have to follow
the idea of terms as overlapping in concept space for these models, too. Thus,
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we assume that there are terms ti, tj with ti ∩ tj 6= ∅. For simplicity, let us also
assume that the terms form a complete cover of the concept space U .

In order to apply the PCS model, terms are mapped onto disjoint atomic
concepts in the following way: We form complete conjuncts (or minterms) of all
terms t1, . . . , tn, in which each term occurs either positively or negated, i.e.

m0 = t̄1 ∩ t̄2 ∩ t̄3 ∩ · · · t̄n−1 ∩ t̄n

m1 = t1 ∩ t̄2 ∩ t̄3 ∩ · · · t̄n−1 ∩ t̄n

m2 = t̄1 ∩ t2 ∩ t̄3 ∩ · · · t̄n−1 ∩ t̄n

m3 = t̄1 ∩ t̄2 ∩ t3 ∩ · · · t̄n−1 ∩ t̄n
...

m2n−2 = t̄1 ∩ t2 ∩ t3 ∩ · · · tn−1 ∩ tn

m2n−1 = t1 ∩ t2 ∩ t3 ∩ · · · tn−1 ∩ tn

3 Language models

After setting up the framework, now we will show how two popular language
models can be interpreted in terms of the PCS model. The basic idea of lan-
guage models is as follows: Queries and documents are generated by statistical
language models. In order to estimate the relevance of a document with respect
to a query, we ask for the likelihood that they were both created by the same
language model. So we are looking for the probability of P (d ∩ q).

In terms of our PCS model, this probability is computed via summing up
the probabilities of the disjoint concepts:

P (d ∩ q) =
∑
m

P (m ∩ d)P (q ∩ m) (1)

In the most basic case, language models assume a query to be a set of terms.
In the framework used here, this means that a query is a single atomic concept

q = mq = tβ1
1 ∩ · · · ∩ tβn

n .

Here βi indicates whether the term ti is present or absent in the query:

tβi

i =
{

ti if βi = 1,
t̄i if βi = 0.

Thus, we get for the joint probability of d and q:

P (d ∩ q) = P (mq ∩ d)P (q ∩ mq)
= P (d ∩ mq)
= P (mq|d)P (d) (2)

Next we assume independence of terms.
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P (tβ1
1 ∩ · · · ∩ tβn

n |d) =
n∏

i=1

P (tβi

i |d) (3)

Combining this assumption with eqn 2, we get

P (d ∩ q) = P (d)
n∏

i=1

P (tβi

i |d) (4)

Now we can split the product into two parts, depending on the fact whether
the term is present or absent in the query:

P (d ∩ q) = P (d) ·
∏

βi=1

P (ti|d)
∏

βi=0

P (t̄i|d) (5)

Based on this formula, we now can explain both the Ponte/Croft model and
Hiemstra’s.

Ponte and Croft [Ponte & Croft 98] consider the ‘classical’ implication di-
rection d → q, thus we have

P (d → q) = P (q|d) =
P (d ∩ q)

P (d)
=

∏
βi=1

P (ti|d)
∏

βi=0

P (t̄i|d)

=
∏

βi=1

P (ti|d)
∏

βi=0

(1 − P (ti|d)) (6)

[Ponte & Croft 98].
In contrast, Hiemstra [Hiemstra 98] considers the other implication direction:

P (q → d) = P (d|q) =
P (d ∩ q)

P (q)
=

P (d)
P (mq)

∏
βi=1

P (ti|d)
∏

βi=0

P (t̄i|d) (7)

In addition, Hiemstra assumes that terms occuring in the document but not
in the query have no effect on the relevance of a document, thus the second
product of the last equation is omitted, and we arrive at the ranking formula:

P (q → d) =
P (d)

P (mq)

∏
βi=1

P (ti|d) (8)

Since P (mq) is constant for a given query, its value is not needed for com-
puting a ranking wrt. a query. So both models require the estimation of the
parameters P (ti|d); Hiemstra’s model also needs an estimate for P (d), but this
parameter can be assumed to be equal for all documents.

The parameters P (ti|d) can be derived by assuming a statistical language
generation process for the document text. Thus, this parameter could be es-
timated as the relative within-document frequency of ti within the document
d. However, since the document is the only observation that we have for the
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underlying language gmodel, we have to cope with the problem of sparse data.
Thus, it is assumed that there is another, more general language model which
generates the whole document collection. For estimating P (ti|d), observations
from the two language models are combined, i.e. by considering both the within-
document frequency of ti in d and the inverse document frequency of ti in the
collection.

4 Conclusions and open issues

Comparing the language models with the classical IR models as explained in
[Wong & Yao 95], it becomes apparent that none of the classical models pro-
vides a solid theoretical solution for the document indexing problem: Given a
specific document d, how should it be mapped into the concept space, i.e. how
to estimate P (ti|d)? This problem is solved by bthe language models, by con-
necting statistical models of language with probabilistic IR models. In addition,
solutions for the sparse data problem are provided.

However, a closer look reveals new problems. The basic idea in the estimation
of P (ti|d) is that this probability can be estimated by the relative frequency of
the term ti in the document d, and the inverse document frequency is only
considered due to the sparse data problem. But this approach is inconsistent:
Using the relative frequency is only appropriate in case we assume that P (ti ∩
tj |d) = 0 whenever i 6= j. That is, in the probability estimation process,
terms are disjoint events, whereas in the concept space, they are assumed to
be independent.

One possible way out is the assumption that P (ti|d) is only proportional to
the relative frequency of ti in d. Assuming a constant factor for all query terms,
the ranking would not be affected by this change.

In any case, the precise definition of a mapping from term occurrences within
document texts into terms and documents in concept space still is an open issue.
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