Language Model Feature Induction via Discriminative Techniques

Jerry Xiaojin Zhu

School of Computer Science, Carnegie Mellon University

Abstract

We propose research on a novel method to
improve traditional language modeling. The
problem of language modeling is to assign
probabilities to any sentence, such that well-
formed, meaningful sentences get high proba-
bilities, while ungrammatical, nonsense ones
get low probabilities. Traditional trigram
language models are unable to model sen-
tence level syntactic and semantic correla-
tion, and thus often assign high probabilities
to some ill-formed sentences. Such deficiency
in general will affect the application, for ex-
ample, it could lead to error in speech recog-
nition. This research addresses the problem
by training a support vector machine (SVM)
classifier to learn a decision boundary be-
tween well-formed and ill-formed sentences.
The SVM feature space is chosen to express
sentence level correlation. With the trained
SVM, we classify candidate sentences as ei-
ther well-formed or ill-formed. If a sentence
is classified as ill-formed, we can then de-
crease its language model probability accord-
ingly. This paper focuses on the classification
problem, especially feature representation for
sentences. In this paper, We will use auto-
matic speech recognition as the application
for language modeling. We show that it is
very hard to derive good features based on
part-of-speech tagging that captures sentence
syntactic structures. We also show empiri-
cally that the margin of SVM classification
can be used to derive posterior probabilities
of classes.

1. Introduction

Language model (LM) is an important part in many
natural language related tasks, including information
retrieval, machine translation, and speech recognition.
The commonly used language model is so called tri-
gram language model, which, as we will see in the fol-

ZHUXJQCS.CMU.EDU

lowing sections, is unable to model language on sen-
tence level. This paper tries to improve upon trigram
language modeling to incorporate longer range infor-
mation. We will use speech recognition as an example
application, but we believe the research is applicable
to information retrieval as well.

Automatic speech recognition (ASR) systems offer
an attractive interface between human and machines.
State of the art ASR systems have begun to show
practical impact in situations where the user is physi-
cally challenged to use a keyboard or see a display; in
hands-free eye-free applications such as driving assis-
tant; or in telephone based automatic information ser-
vices where keyboard input is limited. However these
applications are usually very limited in acceptable vo-
cabulary, syntax, or even speaking style. We are still
unable to talk to a computer as fluent as HAL-9000 in
72001: A Space Odyssey”. Computers simply can-
not recognize large vocabulary spontaneous speech,
e.g. conversations in our everyday life, with enough
accuracy, let alone the subsequent much harder natu-
ral language understanding, reasoning, and responding
problems.

One reason for this lack of accuracy can be ascribed to
the deficiency of a major module, the language model,
within ASR systems. Intuitively, a language model
contains all the knowledge the system knows about
language usage. Ideally the language model should
assign high probability scores to all well-formed sen-
tences (fluent, meaningful ones), and low probability
scores to ill-formed sentences (ungrammatic, nonsense
ones). An ASR system uses these probability scores
to weigh acoustically similar candidate sentences in
order to find the best decoding for a human utter-
ance. For example, two candidate sentences for the
utterance ”It’s hard to recognize speech.” might be
the correct sentence itself, and ”It’s hard to wreck a
nice beach.”. A good language model should give a
high probability score to the first candidate sentence,
and a much lower probability score to the second one.
But to pack the complete language usage knowledge in
a computational model is very hard. LM researchers

have to enormously simplify the language model to
make it practically viable. Because of this simplifica-
tion, language models are more lax than we would like
it to be. It still gives high probability scores to well-
formed sentences, but it might give higher scores to
some ill-formed sentences, which leads to recognition
errors. Creating better language models is therefore
an important problem for ASR.

The long term goal of this research is to improve lan-
guage modeling. As a first step, the focus of this pa-
per is to classify well-formed sentences from ill-formed
sentences, in a way that we can estimate the poste-
rior probabilities. Specifically, we pose it as a classic
binary classification problem. The well-formed and ill-
formed sentences are two distinct classes. We collect
samples from each class, and then train a support vec-
tor machine (SVM) to find a good decision boundary
between the two classes. With the SVM we can com-
pute the classification and margin (confidence) for any
unseen new sentences.

2. Related Work

Over the last decade, there has been extensive work
on language modeling. For example, (Katz, 1987) and
(Jelinek & Mercer, 1980) introduced the trigram inde-
pendence assumption and ways to estimate probabili-
ties from observed frequencies, (Witten & Bell, 1991),
(Kneser & Ney, 1995) and (Rosenfeld, 1996) improved
the estimation with various statistical methods. A de-
tailed survey of recent literature on language model-
ing can be found in (Rosenfeld, 2000). Our approach
differs from other work in the field in two important
technical aspects.

1. We consider every sentence as an integrated unit.
Most language models operate on subsentence lev-
els like trigrams (word sequences of length 3) for
pragmatic reasons. By doing so they lost the
ability to model phenomena that range over a
whole sentence, such as some syntactic and se-
mantic constraints. Being able to model sentence
level phenomena is essential to a better language
model.

2. We find the deficiency of the existing language
model with a machine learning approach.

Recently Rosenfeld (Rosenfeld, 1997) introduced a
whole sentence maximum entropy language model
which is capable of model sentence level phenomena.
Following the work, Chen and Rosenfeld (Chen &
Rosenfeld, 1999) suggested a method to systemati-
cally explore the difference of any computable aspects

(called features) between an existing language model
and the empirical distribution of training sentences,
and exploits the differences to improve the language
model. These features can include sentence level fea-
tures such as sentence length, syntactic structure of
the sentence, etc. Zhu and Rosenfeld (Zhu et al., 1999)
applied the method to a set of sentence level linguistic
features and showed some improvement in language
model likelihood. However their work relied on hu-
man judgement to specify a family of computable fea-
tures, on which the differences are sought. Human
judgement, although usually judicious, is often highly
focused on a small area of the problem space. Our pro-
posed approach instead would use a machine learning
method to automatically find a (possibly) complex fea-
ture that exhibits the difference most. We believe this
will be a good complement to the previous work.

Cai et al. (Cai et al., 2000) also started from a set of
manually picked features which are believed to capture
the semantic coherence of a sentence. But instead of
using the features as they are for language modeling,
they fit a generalized additive model with smoothing
splines. This is essentially a step toward letting the
data decide how to best use the features. But their
initial set of only six features are too limited to al-
low enough freedom in generalized additive model fit-
ting, while we are going to start with a much broader
choices.

Stolcke et al. (Stolcke et al., 2000) trained an ’anti’
language model, not from well-formed sentences but
from decoded candidate sentences. Since most candi-
date sentences contain errors originated from the lan-
guage model, the anti-language model is specialized in
finding the deficiency of the original language model.
This is an example of applying machine learning ap-
proaches. However unlike our approach, their model
cannot capture sentence level phenomena.

Perhaps the most similar work is by Eneva et al.
(Eneva et al., 2001). They trained a classifier between
well-formed and ill-formed sentences using boosted de-
cision stumps, with many different types of semantic
features like content word pair likelihood ratio, word
repetition etc. We plan to use a different classifier,
namely SVM which has been proven to work well in
text categorization tasks, and explore syntactic fea-
tures (and the combination of both). We will also es-
timate the posterior probabilities from SVM.

3. Approach
3.1 Background

In ASR systems, the final processing step is 'N-best
list rescoring’ ((Jelinek, 1997), pp 86). Before this
step, the recognizer has generated N candidate sen-
tences which are acoustically similar to the input ut-
terance (but may not make sense syntactically or se-
mantically). At this step the recognizer’s task is to
pick the best sentence in both the acoustics and lan-
guage sense. The N candidate sentences are called an
N-best list, see Figure 1. Formally, each candidate sen-
tence s has an acoustic score P(ul|s) which indicates
its acoustic proximity to the input utterance u. N-
best list rescoring is to find the best sentence s}, that
maximize the a posteriori probability

sy = argmax P(s|u) = arg max P(u|s)P(s)
s s

Therefore we need a language model score P(s) to mul-
tiply to the acoustic score and re-rank the N-best list to
get the best sentence. P(s) ideally should assign high
scores to all well-formed sentences and low scores to all
ill-formed sentences. This is very hard, because we do
not yet know how to put human intuition of good and
bad sentences in a computational model. In practice,
the so called trigram language model is widely used
because of its simplicity. In trigram language mod-
els, the probability of a sentence is the product of the
conditional probabilities of its words, conditioned on
previous two words respectively:

P(s) = P(w1,...,wn) = ﬁp(wi|wi—2awi—1)

i=1

and each conditional probability is estimated by count-
ing a large text collection, or corpus:

count(w;_a2,w;_1,w;)
count(wi—o,w;—1)

P(wi|wi_2,wi_1) ~ (1)
Albeit popular, trigram language models have severe
deficiencies, notably its inability to model long range,
sentence level phenomena. This problem roots in their
short range (two previous words) conditional indepen-
dence assumption. Intuitively if we chop a sentence
into several large chunks and scramble the order of
the chunks, the resultant sentence will most likely have
comparable trigram language model probability as the
original sentence, but will be nonsense to a human
reader. In our prior work, we have tried to incorpo-
rate sentence level linguistic and semantic information
into language models and showed some improvement
(Zhu et al., 1999) (Cai et al., 2000). In this work, we
will extend our research with machine learning meth-
ods to automatically improve upon trigram language

models '. As a first step towards this end, we focus

on finding good features that reveal the deficiency of
trigram language models.

3.2 Technical Approach

Our approach takes a whole sentence as a unit and in-
vestigates the difference between well-formed and ill-
formed sentences. To do so we need samples from both
classes. The probability distribution of well-formed
sentences is unknown. But we can easily acquire sam-
ples (here and in the sequel, a sample is a complete
sentence) from that distribution. Indeed, every sen-
tence published in books, newspapers, on the web, or
spoken on radio and TV broadcast, is a sample from
the distribution. In the following we call well-formed
sentences natural sentences to indicate their origin.
In this experiment we will use as natural sentences a
1 million-word broadcast news transcription collected
from ABC, CBS, CNN, NPR between 1992 and 1996.

For ill-formed sentences, we focus on a subset of them,
namely those generated by a trigram language model
with typical probabilities, since they are closely related
to the candidate sentences in the N-best lists. In the
following we call them trigram-generated sentences. It
is easy to use the trigram language model as a gener-
ative model and generate sentences as follows: select
the first word randomly according to word frequencys;
select next word randomly according to the trigram
probability (1) and so on. We use a separate (but from
the same source and same period) 100 million-word
text collection to train the trigram language model.
Figure 2 shows a few sentences generated in this fash-
ion. They (especially the longer ones) are very distinct
to a human reader.

We pose the problem of automatically finding the dif-
ference between natural and trigram-generated sen-
tences as a binary classification problem. (Note in fact
the two classes completely overlap since both is capa-
ble of generating any sentence. But their probability
distributions are very different.) The samples men-
tioned above serves as positive and negative examples.

There are many methods for binary classification, and
we choose support vector machines (SVM). A SVM
finds a linear decision boundary that separates the pos-
itive and negative examples in an augmented feature
space, such that the distance (the so called margin)
from the decision boundary to the closest positive or
negative example is kept as large as possible. This
maximization of margin gives SVM good generaliza-

n theory our method can be used to improve any kind
of language model.

| log P(uls) | candidate sentence s |

-5522539 | it sites class eyes quality of life as problems
-5556088 | it sites class size quality of life has problems
-5556088 | it cites class size quality of life has problems
-5622228 | it sites klas eyes quality of life has problems
-5653812 | it sites class size quality of life as problems
-5653812 | it cites class size quality of life as problems
........ (many, many other candidate sentences)

Figure 1. The N-best list for utterance ”It cites class size quality of life as problems.” Errors are highlighted

how many different people once if you’re going to interrupt you right

films that were going too fast

i just want approval ratings are drawn to the rescue operations of the

and we hope to move because of nafta culture has reached out to walk
down the authority to stop the deity republican conventions with a star power

paranoia about each other for each of you

yes hello

believers say who needs a lawyer from a unk very impressed with such
and such is not a time magazine that we just don’t believe

he took over or is it by all human beings

danny rolling

and we can put on trial

expect the fiction within the white house and the drag racing school
steered a costly and time is up to eight bucks or part of the abortion plank

Figure 2. Sample sentences generated from a trigram language model

tion performance. In addition, SVM has a computa-
tionally efficient way to augment the feature space via
so called kernel functions. For details see e.g. (Burges,
1998) (Cristianini & Shawe-Taylor, 2000). We choose
SVM because

e It is the state-of-the-art classification method in
text categorization tasks (Joachims, 1998), which
is closely related to our problem (though we note
in our problem the order of words in a sentence
is important, and we will take that into account;
while in text categorization people often use the
bag-of-word model which ignores order);

e Its kernel function gives us potential ways to ex-
press word interactions on a sentence level;

e It produces a single number (the margin) when
classifying a new sentence. The number can easily
be converted to a posterior probability or used in
the subsequent discriminative training.

The performance of SVM is influenced by our design
of two things: the feature representation of the sen-
tences, and the kernel function. Traditionally people
have used "bag-of-words’ feature presentation (McCal-
lum & Nigam, 1998). But it might not give us the best

performance since this representation ignores word or-
der information completely, which intuitively is impor-
tant in our domain.

We plan to investigate a variety of feature representa-
tions, including semantic features used by Eneva et al.
(Eneva et al., 2001), and syntactic feature. To aug-
ment the feature space, we will investigate the effect
of nonlinear kernels.

Once we have trained a SVM, we can classify a new
sentence as either a natural sentence or a trigram-
generated one. We also get the raw (unthresholded)
output f(s) of the SVM

f(s) = Zyiaik(si,s) +b

which is related to the confidence or the margin. We
will use f(s) to estimate the posterior probabilities.

3.3 Exploring Features

Intuitively, trigram sentences in Figure 2 are ’bad’ be-
cause of two reasons: first they don’t following the
correct English grammar, and second the meaning of
words don’t go with each other. This prompts us to
look for features that represent the syntactic and se-
mantic aspects of language.

We experiment with the following syntactic features:

e Bag-of-word

This is the familiar feature representation used in
document classification. A sentence is represented
as a V dimensional vector, where V' is the vocabu-
lary size (typically more than 10,000). The value
of a dimension can be binary, i.e. ’1’ if the corre-
sponding word occurs in the sentence, ’0’ other-
wise. The value can be the raw count of the word
in the sentence as well. It can also be the empiri-
cal frequency, which is the raw count normalized
by the length of the sentence.

The bag-of-word representation enjoyed enormous
success in document classification. However we
expect this representation perform poorly for our
task for two reasons: first a sentence is much
shorter than a document which leads to serious
sparseness problem; second bag-of-word ignores
word order completely, which is important for
grammar. Therefore we include this representa-
tion here for comparison purpose only.

Bag-of-POS

A natural way to handle sparseness while looking
for syntactic features is to back off from words
to their part-of-speech (POS) tags. There are far
less POS tags than the number of words. The
system we used, the Brill tagger, employs 40 dif-
ferent POS tags. For example, it tags the trigram-
generated sentence

when the director of the many of your father

into a POS sequence
WRB DT NN IN DT NN IN PRP$ NN

which, we hope, still retains enough syntactic in-
formation.

A natural feature would then be bag-of-POS,
which is exactly bag-of-word except the vocab-
ulary consists of POS tags instead of words.

Sequence-of-POS

So far we ignored the order of words/POS, which
we think are important for syntactic features.
Therefore we consider all sequences of POS of
length k. Each such sequence will be a feature,
and therefore the dimension of the feature vec-
tor is 40*. Inspired by (Lodhi et al., 2000) which
uses letter sequences for document classification,
we consider not only sequences consisting of ad-
jacent POS tags, but also sequences that are far

apart. For instance, let £k = 3 and "'WRB IN DT’
is a non-adjacent sequence for the example sen-
tence above. The value of a sequence is weighted
by A%, where A\ € (0,1) is a tuning parameter, and
s is the span of the sequence in words. As a result
the importance of a sequence decays exponentially
as the span gets longer. In the above example the
sequence "'WRB IN DT’ has a weight \®, because
the sequence spans the five words when the di-
rector of the’.

Sequence-of-STOPOS

One concern about the part-of-speech tagging is it
might be too aggressive in blurring the syntactic
function of words. One alternative is to keep some
stop words (common words like 'the, of, a, and’),
while reducing all other words to their part-of-
speech tags. We use a stop word list of 70 most
frequent words. For the example sentence above,
the result is

WRB the NN of the NN of PRP$ NN

This hybrid tagging system of stop words and
POS has 110 symbols, we call it STOPOS. As
above, we seek all sequences of length k£ and use
them as features.

Statistics of STOPOS n-gram counts

Now we consider a very different family of fea-
tures. Let the STOPOS tagging of a k£ word sen-
tence S be t1,ta,---,tx. Consider all the STO-
POS n-grams (an n-gram is a sequence of n con-
secutive tags) in this sentence: there will be
k—n+1n-grams: fromtq, -+, t, totg_ni1, ", Tk

For each STOPOS n-gram, we find its count ¢
in a separate 100 million word natural sentence
corpus. That is, ¢ is the number of times the
n-gram appear in the separate corpus (note c is
not the count in the sentence S). The corpus is
used solely for getting these counts, and not used
anywhere else.

Thus the sentence S can now be represented as n
counts ¢y, +,c,. Our intuition is that trigram-
generated sentences tend to include ’unfamiliar’
n-grams, which correspond to lower ¢ counts. We
derive several features from counts ¢y, --,c, for
sentence S as follows:

— The min, max, mean, median of counts
1, Cn.

— The histogram of the counts. We use a his-
togram with 195 bins hyq, - - -, hig5. The value
of each bin is how many ¢;’s fall in that bin.

feature | test set accuracy |
bag-of-word 58.1%
bag-of-POS 55.8%
sequence-of-POS 58.4%
sequence-of-STOPOS 56.9%
STOPOS 4-gram stat. -
semantic 77.1%
(4-gram stat.)+(semantic) 75.5%

Table 1. Comparison of various features

— Likelihood ratio. Using yet another separate
corpus of 2 million word trigram-generated
and 2 million word natural sentences, we
build two pooled histograms h* and A", one
for each class. We interpret them as two
multinomial distributions over counts:

P(S|natural) = P(ey,---,cp|natural)
= [P
i=1

and similarly P(S|trigram — generated).
Then the likelihood ratio is defined as

P(S|trigram — generated)
P(S|natural)

For semantic features, we follow the work in (Eneva
et al., 2001) and use the same 70 features. Most of
the features compute the strength of content word co-
occurrence in a sentence; some detect content word
repetition.

4. Experiment Results

Through out the experiment, we only include sentences
that have at least 7 words, since shorter trigram-
generated sentences are very similar to natural sen-
tences. We use natural sentences from broadcast news
transcript. A separate broadcast news transcript cor-
pus is used to generate a typical trigram language
model, from which we sample trigram-generated sen-
tences. We use svm-light (Joachims, 1999) and mysvm
(Ruping, 2000) to train SVM used in this experiment.
Due to SVM convergence problems, we use a small
training set. QOur training data consists of 4,800 sen-
tences, half natural and half trigram-generated. Our
test data consists of 12,000 sentences.

We experimented with the features proposed above,
and list the results in Table 1. The reported accuracy
is the best among several parameter settings within
the same feature family. Details are:

e bag-of-word: binary values, second order polyno-
mial kernel (z.y)2.

e bag-of-POS: binary values.

e sequence-of-POS: k = 3, any sequence’s span is
limited to be within 7 words, A = 0.8.

¢ sequence-of-STOPOS: k = 3, any sequence’s span
is limited to be within 7 words, A = 0.5.

e STOPOS 4-gram statistics: SVM training didn’t
converge on this feature set alone. The feature
set includes normalized min, max, mean, median
counts; normalized log likelihood ratio, the first
100 bins of the normalized histogram.

The semantic features worked comparably to those
reported by (Eneva et al., 2001) (note we used far
less training data, which may explain the few percent-
age off). Interestingly none of the syntactic features
worked as expected. This hints that we are looking at
possibly the wrong representation, i.e. part-of-speech.

With the features that did work, i.e. semantic features,
we plot the distribution of SVM classification margin
on the test set as shown in Figure 3. The blue curve is
trigram-generated and the red one natural sentences.
The x-axis is margin and the y-axis is frequency. We
can fit some distribution on them as in (Platt, 1999),
and get class posterior probabilities, which can be used
later on to improve N-best list rescoring.

0.04

0.02

0.01f

margin

Figure 3. Distribution of SVM margin on test data

5. Discussions

As we have seen, the proposed syntactic features in-
volving POS didn’t work. A possible reason is that
part-of-speech tagging doesn’t really reveal the syn-
tactic structure of sentences. To this end, we can pro-
ceed to parsing, which may provide more sophisticated
syntactic information.

In our experiment, the convergence of SVM is a major
problem. Our empirical experience seems to indicate
that when the training set is large and noisy, conver-
gence becomes slow. In the future we plan to exper-
iment with logistic regression instead. The output of
logistic regression is posterior probabilities by defini-
tion, without the need of another empirical estimation.

Acknowledgements

The author would like to thank Rose Hoberman for
the semantic features, Benjamin Han for the enhanced
Brill tagger, Thorsten Joachims for svm-light, Stefan
Ruping for mySVM, Roni Rosenfeld and Sebastian
Thrun for useful discussions, and all the anonymous
reviewers for valuable feedbacks.

References

Burges, C. (1998). A tutorial on support vector ma-
chines for pattern recognition. Data Mining and
Knowledge Discovery, 2, 955-974.

Cai, C., Wasserman, L., & Rosenfeld, R. (2000). Expo-
nential language models, logistic regression, and se-
mantic coherence. Proceedings of the NIST/DARPA
Speech Transcription Workshop.

Chen, S. F., & Rosenfeld, R. (1999). Efficient sampling
and feature selection in whole sentence maximum
entropy language models. ICASSP-99. Phoenix,
Arizona.

Cristianini, N., & Shawe-Taylor, J. (2000). An in-
troduction to support vector machines and other
kernel-based learning methods. Cambridge Univer-
sity Press.

Eneva, E., Hoberman, R., & Lita, L. (2001). Learning
within-sentence semantic coherence. EMNLP work-
shop.

Jelinek, F. (1997). Statistical methods for speech recog-
nition. Cambridge, Massachusetts: MIT Press.

Jelinek, F., & Mercer, R. L. (1980). Interpolated es-
timation of Markov source parameters from sparse
data. Proceedings of the Workshop on Pattern

Recognition in Practice (pp. 381-397). Amsterdam,
The Netherlands: North-Holland.

Joachims, T. (1998). Text categorization with support
vector machines: Learning with many relevant fea-
tures. Proceedings of the European Conference on
Machine Learning.

Joachims, T. (1999). Making large-scale svin learning
practical. Advances in Kernel Methods - Support
Vector Learning. MIT-Press.

Katz, S. M. (1987). Estimation of probabilities from
sparse data for the language model component of a
speech recognizer. IEEE Transactions on Acoustics,
Speech and Signal Processing, 35, 400-401.

Kneser, R., & Ney, H. (1995). Improved backing-off for
m-gram language modeling. Proceedings of the IEEE
International Conference on Acoustics, Speech and
Signal Processing (pp. 181-184). Detroit, Michigan.

Lodhi, H., Shawe-Taylor, J., Cristianini, N., &
Watkins, C. (2000). Text classification using string
kernels (Technical Report NC-TR-00-079). Neuro-
COLT.

McCallum, A., & Nigam, K. (1998). A comparison
of event models for naive bayes text classification.
AAAI-98 Workshop on Learning for Text Catego-
rization.

Platt, J. (1999). Probabilistic outputs for support
vector machines and comparisons to regularized
likelihood methods. In A. Smola, P. Bartlett,
B. Scholkopf and D. Schuurmans (Eds.), Advances
in large margin classifiers. MIT Press.

Rosenfeld, R. (1996). A maximum entropy approach
to adaptive statistical language modeling. Computer
Speech and Language, 10, 187-228. longer version
published as “Adaptive Statistical Language Mod-
eling: A Maximum Entropy Approach,” Ph.D. the-
sis, Computer Science Department, Carnegie Mellon
University, TR CMU-CS-94-138, April 1994.

Rosenfeld, R. (1997). A whole sentence maximum
entropy language model. Proceedings of the IEEE
Workshop on Automatic Speech Recognition and
Understanding.

Rosenfeld, R. (2000). Two decades of statistical lan-
guage modeling: Where do we go from here? Pro-
ceedings of the IEEE, 88.

Ruping, S. (2000). mySVM. http://http://www-
ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/.

Stolcke, A., Bratt, H., Butzberger, J., Franco, H.,
Gadde, V. R. R., Plauche, M., Richey, C., Shriberg,
E., Sonmez, K., Weng, F., & Zheng, J. (2000). The
SRI march 2000 Hub-5 conversational speech tran-
scription system. Proceedings of the NIST Speech
Transcription Workshop. College Park, MD.

Witten, I. H., & Bell, T. C. (1991). The zero-
frequency problem: Estimating the probabilities of
novel events in adaptive text compression. IEEFE
Transactions on Information Theory, 37, 1085-
1094.

Zhu, X., Chen, S. F., & Rosenfeld, R. (1999). Linguis-
tic features for whole sentence maximum entropy
language models. Proceedings of the European Con-
ference on Speech Communication and Technology
(Eurospeech). Budapest, Hungary.

