
Student Name: ______________________________________

Andrew ID: _______________________________________

Seat Number: _______________________________________

Midterm Exam
Search Engines (11-442 / 11-642)

October 20, 2015

Answer all of the following questions. Each answer should be thorough, complete, and relevant.
Points will be deducted for irrelevant details. Use the back of the pages if you need more room for
your answer.

Calculators, phones, and other computational devices are not permitted. If a calculation is required, write
fractions, and show your work so that it is clear that you know how to do the calculation.

Advice about exam answers...

 Sometimes an answer says "I would use <technique> to do <x>". That answer shows that you

remember a name, but it does not show that you remember how the technique works, or why it is the
right tool for this problem. Give a brief description of how the technique works and why it is the
right tool for this job. If the technique needs other information, explain where the information comes
from.

.

1 Evaluation
Suppose that a large health provider has a website with a search engine that allows patients to find
information about staying fit, eating well, diseases, treatments, and tests. The search engine receives
about 35 queries per week. The company doesn’t have data for evaluating the accuracy of the search
engine, and doesn’t know its accuracy. Describe how you would evaluate the accuracy of the search
engine. Be clear about the method you would use, the data it would require, how much data it would
require, and how you would get the data. Explain why your method is the right choice for this
problem. [15 points]

Answer
The search engine doesn’t receive much traffic, so there isn’t enough click data and there isn’t enough
traffic to use interleaved testing. The Cranfield methodology is the best choice in this situation. Start
by randomly sampling 50-100 queries from the query log. Develop written information needs to
describe what each query is about. If possible, index the documents with several open-source search
engines, run each query against each search engine, and pool the results for each query to form a pool
of documents to be assessed. If it is not possible to use several open-source search engines, then
create several (e.g., 5) variants of each query, run each variant against the search engine, and pool the
results to form a pool of documents to be assessed. The size of the pools is determined by the
available budget, and the nature of the problem; probably top 100 is sufficient for this task because
most web-site visitors won’t search very deeply into the results. Sort the pool of documents for each
query into a random order. Have someone assess the results, either on a binary scale (relevant vs.
non-relevant) or on a 5-point scale. Use several metrics (P@n, MAP, NDCG) to assess the search
engine quality.

2 Document Structure
Two queries and two structured documents are shown below. For each query, explain i) what the
query ranks; ii) whether information from different paragraphs is combined, and if so, how; iii) how
scores are calculated (do not write formulas), and iv) whether it gives a higher score to Document1 or
Document2 and why (assume that they have the same overall length). [16 points]

Query1: #and (silicon.paragraph valley.paragraph bubble.paragraph)
Query2: #and[paragraph] (silicon valley bubble)

Document1 Document2
My Favorite Bubbles and Valleys title Is it Finally Over?
…. An Irreverent Journey of Faith
happens on Bubble girl ….

paragraph1 There are 4 Signs That Silicon Valley's
Tech Bubble Is Bursting…..

…. My leakiness is all the more evident
against the shriveled, brown autumn
landscape of Valley. …….
There are many minerals around their
hometown, silicon, iron…
… silicon gulch …

paragraph2 Tourists are taking the bus out of Silicon

Valley and
One of the big reasons for the blowing up
of the latest bubble has been big money
“tourists”…..

… bubble, bubble, toil and trouble …
… crossing the valley of death …

paragraph3 …. proliferation of unicorns in Silicon
Valley is another sign of Bubble ….

Answer:
Query1 ranks documents. Query2 ranks paragraphs.

Query1 combines the information from all paragraph elements into a single inverted list. Then it
uses the default document-scoring algorithm (e.g., MLE with two-stage smoothing) to calculate a
score for the document.

Query2 does not combine information from different paragraphs. Instead, a score is calculated for
each individual paragraph element using a mixture model scoring algorithm that is a weighted
average of the MLE score for the element, document-level smoothing, and corpus-level smoothing.

Query1 ranks Document2 ahead of Document1 because Document2 has more occurrences of ‘silicon’;
the two documents have the same number of other query terms. Query2 doesn’t rank documents.

3 Retrieval Models
Inverse document frequency (idf) and the Robertston Sparck-Jones (RSJ) weight are used to
accomplish a similar purpose. Write both formulas (and define your variables). Explain their
purpose (i.e., why their behavior is desired or important). Describe how their behavior differs. For
example, if you replaced the BM25 RSJ weight with idf, what would be the effect on the document
ranking algorithm? [15 points]

Answer:
idf (t): Any of the following formulas are acceptable:

RSJ(t): Both of the following formulas are acceptable:

where N is the number of documents in the corpus and dft is the number of documents that contain t.

Both formulas favor words that are rare in the corpus. Rare words are better able to discriminate
relevant documents from non-relevant documents.

The RSJ weight has a stronger reward for rare terms and a stronger penalty for frequent terms. Words
that occur in more than half of the corpus get a weight of 0. If the RSJ weight is replaced with idf, the
penalty for frequent words is reduced – especially for words that occur in more than half of the
documents.

 
0.5df

0.5dfN
log

t

t




tRSJ   











0.5df

0.5dfN
log,0

t

tMAXtRSJ

  









tdf

N
tidf log   







 


tdf

N
tidf

1
log   1log 










tdf

N
tidf

4 Document Representation
Search engines use shallow language analysis and heuristics to convert a document a bag-of-words
(index terms). Why is lexical processing critical to the performance of search engines? Describe
four lexical processing methods. For each method, give examples to show its advantages and
disadvantages, or the tradeoff of using this method. [16 points]

Answer
Lexical processing transforms a document from natural language to a representation of
meaning that a search engine can process quickly when a query is received. This
transformation must produce a representation that is simpler, but that also retains all of the
important meaning of the document. Often poor accuracy is due to a poor text
representation.

Types of lexical processing:

 Case conversion: Apple -> apple. Advantages: Improves recall, matches more

queries. Disadvantages: Apple may be used as a company name, while apple will
be considered as a kind of fruit.

 Stemming: apples -> apple. Advantages: Improves recall, matches lexical variants
that have the same meaning. Disadvantage: May conflate words that a person
would consider different (e.g., ‘execute’ and ‘executive’) or different in a particular
situation (e.g., the company ‘apple’ and ‘apples’).

 Stopword Removal: the, of, a. Advantages: Discard meaningless word, reduce
index size, improve accuracy. Disadvantage: “to be or not to be” after removal, it
makes some queries difficult to satisfy. If there is no disk limit, we could store stop
words in our index, and we could specify rules that if stopwords are more than half
the terms, we still keep it when matching queries.

 De-compounding: computer-virus - > computer, virus: Advantages: Provides a
more accurate representation of the document, enables a broader range of queries to
match. Disadvantage: n-grams like “roe v. wade” will be meaningless.

 Other possible answer will be: phrase, POS

5 Relevance Feedback
What is relevance feedback? Provide two reasons that it is it not used in web search engines.
Describe a task or environment where relevance feedback could be expected to be used effectively.
[14 points]

Answer
Relevance feedback is a supervised machine learning approach to creating improved queries. It
learns a larger bag-of-words and term weights from example documents. It is not used much in web
search engines because i) users dislike giving feedback, and ii) there is a high risk of learning a poor
query when a user only judges a small number of relevant documents. Relevance feedback could be
expected to be effective in high-Recall tasks such as legal or patent search where users are willing to
judge many documents to produce a query that has a high likelihood of finding many relevant
documents.

6 Heaps Law
Write the formula for Heaps Law (define your terms). Give one practical example of its use (i.e., a
situation where it would be useful). [10 points]

Answer

where

 K is a constant. Usually 10 ≤ K ≤ 100.
 N is the number of word occurrences in the corpus
 β is a constant. Usually 0.4 ≤ β ≤ 0.6 for English.

Heaps Law is useful for predicting the size of a term dictionary before building a system.

β KNV 

7 Indexing

Describe	Top‐docs	(Champion)	Lists.			What	is	their	purpose,	how	are	they	constructed,	and	
how	many	terms	have	a	Top‐docs	list	(give	an	intuitive	explanation,	not	a	formula)?		What	is	an	
advantage	and	a	disadvantage	of	using	top‐docs	lists?		What	kinds	of	query	operators	are	a	
good	match	to	Top‐docs	lists,	and	what	kinds	are	a	poor	match?		[14	points]	
	
Answer:	
A	Top‐docs	list	is	a	type	of	inverted	list	that	contains	only	the	best	documents	that	match	a	
query	term.		Top‐docs	lists	are	constructed	by	sorting	the	full	inverted	list	on	some	metric,	for	
example	tf,	p_smoothed	(t|d),	or	PageRank	(d),	and	then	selecting	just	the	top	N	documents.		
Typically	a	Top‐docs	list	is	designed	to	fit	into	one	or	two	operating	system	pages.		Given	Zipfs	
Law,	typically	only	a	small	percentage	of	terms	is	frequent	enough	to	have	a	Top‐docs	list.		The	
advantage	of	Top‐docs	lists	is	that	they	are	much	faster	to	process	than	full	inverted	lists.		The	
disadvantage	is	that	they	don’t	contain	all	documents,	so	the	document	ranking	may	be	less	
accurate	than	a	ranking	that	would	have	been	gotten	with	full	lists.		Score		operators	except	
RankedBoolean	#AND,	because	they	can	match	a	document	even	if	some	arguments	do	not	
match.		Bad		match:	Boolean	#AND	operators	because	they	only	match	if	all	arguments	match.		
#NEAR	and	#WINDOW	are	off	topic	because	Top‐docs	lists	don’t	contain	positions.	
	

