
Is Your Language Model Ready for Dense Representation Fine-tuning?

Luyu Gao and Jamie Callan
Language Technologies Institute

Carnegie Mellon University
{luyug, callan}@cs.cmu.edu

Abstract

Pre-trained language models (LM) have be-
come go-to text representation encoders. Prior
research used deep LMs to encode text se-
quences such as sentences and passages into
single dense vector representations. These
dense representations have been used in effi-
cient text comparison and embedding-based
retrieval. However, dense encoders suffer in
low resource situations. Many techniques have
been developed to solve this problem. De-
spite their success, not much is known about
why this happens. This paper shows that one
cause lies in the readiness of the LM to ex-
pose its knowledge through dense representa-
tion in fine-tuning, which we term Optimiza-
tion Readiness. To validate the theory, we
present Condenser, a general pre-training ar-
chitecture based on Transformer LMs, to im-
prove dense optimization readiness. We show
that fine-tuning from Condenser significantly
improves performance for small and/or noisy
training sets.1

1 Introduction

Language model (LM) pre-training has been very
effective in learning text encoders that can be
fine-tuned for many downstream tasks (Peters
et al., 2018; Devlin et al., 2019). Deep bidirec-
tional Transformer (Vaswani et al., 2017) LMs like
BERT (Devlin et al., 2019) are the state-of-the-
art (Liu et al., 2019; Yang et al., 2019; Lan et al.,
2020). The latest dense encoders, or bi-encoders
are fine-tuned from Transformer LMs to encode
text into a single vector (Reimers and Gurevych,
2019; Karpukhin et al., 2020). Fine-tuning asso-
ciates with vector similarities some practical se-
mantics, e.g., textual similarity or relevance, and
therefore the vectors can be used for efficient text

1Our pre-training code is at https://github.com/
luyug/Condenser

comparison or retrieval by inner product. De-
spite their inference test efficiency, bi-encoders
are not sample efficient, taking a big performance
hit in low resource situations (Karpukhin et al.,
2020; Thakur et al., 2020). In particular, Thakur
et al. (2020) found that bi-encoders significantly
underperform their self-attentive counterpart (cross-
encoder) in low resource settings.

Solution for data scarcity, such as heuristic or
semi-supervised data augmentation, can help boost
bi-encoder performance under low resource. How-
ever, the exact cause for data inefficiency is un-
known. To explain it, this paper presents a theory
about LM readiness towards fine-tuning tasks. We
describe two types of Readiness: 1) Knowledge
Readiness, an LM’s capability to understand the
target task’s language patterns, and 2) Optimization
Readiness, required effort to adjust the LM to chan-
nel its knowledge out for the target task. Knowl-
edge Readiness naturally comes from masked lan-
guage model (MLM; Devlin et al. (2019)) training.
It proves to be effective and critical for learning
general language knowledge. However, given the
disparity between MLM pre-trained Transformer
and bi-encoder, we argue popular LM like BERT
lacks bi-encoder Optimization Readiness.

In this paper, to test out our theory and also
guided by it, we introduce a novel general Trans-
former Encoder pre-training architecture, Con-
denser, which boosts Optimization Readiness by
performing MLM predictions actively CONdition
on DENSE Representation. Our results show the
importance of Optimization Readiness: we ex-
periment extensively with sentence representation,
question answering (QA) and web search tasks,
and find with identical test time architecture, pre-
training time task and data, Condenser converted
from standard Transformer LM yields sizable im-
provement using identical fine-tuning setup without
any data augmentation.

https://github.com/luyug/Condenser
https://github.com/luyug/Condenser


Our contribution in this paper includes: 1)
present a theory that can guide effective general
LM pre-training for bi-encoder, 2) propose a novel
implementation of the theory, Condenser, that ex-
cels under low resource setup, 3) demonstrate how
to stably convert standard pre-trained Transformer
LMs into Condenser with low computation cost.

2 Related Work

LM pre-training followed by task fine-tuning has
become one important paradigm in NLP (Howard
and Ruder, 2018). SOTA models adopt the Trans-
former architecture and MLM task (Devlin et al.,
2019; Yang et al., 2019; Lan et al., 2020). Fine-
tuning LM into bi-encoder has also proved effective
for various tasks (Reimers and Gurevych, 2019;
Karpukhin et al., 2020).

The data inefficiency of bi-encoder has been
a long-known issue. Many successful solutions
have been proposed to boost the quality of bi-
encoder under low resource. For sentence embed-
ding, Reimers and Gurevych (2019) perform trans-
fer learning from NLI. Thakur et al. (2020) uses
semi-supervised training signal from bi-encoder.
For retrieval, Lee et al. (2019) consider heuristic
Inverse Cloze Task (ICT) which emulates search
task. Chang et al. (2020) argues the use of ICT
and other related tasks are “key ingredients” for
strong bi-encoders. Guu et al. (2020) further con-
sider building inductive bias into the LM by adding
a retrieval component to LM pre-training. The
aforementioned methods are specialized solution
for low resource bi-encoder training. This paper
provides an explanation for the issue and presents
a general architecture to solve the problem at LM
pre-training time. While this paper studies general
pre-training architectures of encoder-only LM, we
note modeling adjustment of deep LM for target
task is not a new idea: when it comes to genera-
tion task, pre-trained encoder-decoder models have
been shown effective(Lewis et al., 2020a; Raffel
et al., 2020).

We’d also like to make a distinction from works
in universal sentence representation (Kiros et al.,
2015; Conneau et al., 2017; Cer et al., 2018). In
evaluation, they focus on using the learned embed-
ding as universal features that are linearly mean-
ingful for a wide range of tasks (Conneau and
Kiela, 2018). This paper considers task-specific
fine-tuning of the entire model and focuses on the
target task performance. Fine-tuning trains the en-

tire deep non-linear model and is found more effec-
tive for specific end task performance (Peters et al.,
2019).

3 Fine-tuning Readiness

In this section, we provide a conceptual argument
for what an LM learns during pre-training and dur-
ing fine-tuning. We discuss how the (in)sufficiency
of the former to the latter can affect an LM’s readi-
ness for (dense) fine-tuning. We will present quan-
titative analysis of this theory in section 5.

LM pre-training is based on distributed hypoth-
esis. By unsupervised training on massive text,
the LM builds up general language understanding
knowledge on the training corpus. The implemen-
tation of the LM, on the other hand, defines the
LM’s structure, output and internal behavior. For
example, bi-directional Transformer LM output
position-wise contextualized word embedding with
permutation invariant self attention operations. In
BERT, the CLS token carries information about
sentence pair relations.

During fine-tuning, the supervised training data
brings in task-specific language knowledge and
task semantic (what to predict). Meanwhile, it also
defines the task structure, guiding a pre-trained LM
to optimize its internal computation to channel out
its knowledge and produce effective output. The
differences in general and task knowledge, and in
LM and task structures, define two types of readi-
ness,

• Knowledge Readiness

• Optimization Readiness

In this paper, we focus on general pre-training and
do not consider task semantic in readiness but as-
sume it will be learned only in fine-tuning.

Knowledge Readiness is very well-studied:
BERT demonstrates substantial gain on general
language understanding evaluation (GLUE; Wang
et al. (2018)) with LM pre-training, while post-
BERT models typically see improvements from
expanded training corpus (Liu et al., 2019). Opti-
mization Readiness is less problematic for down-
stream tasks such as token level or sentence pair
classification, as the original LM training is suffi-
cient. Optimization Readiness however becomes a
significant issue for bi-encoders as the process of
general2 text aggregation into a single vector has

2Beyond relational information as in next sentence predic-
tion



Oven [MASK] apple pie[CLS]

Oven [MASK] apple pie[CLS]

Oven [MASK] apple pie[CLS]

h

(a) Transformer Encoder LM

Oven [MASK] apple pie[CLS]

Oven [MASK] apple pie[CLS]

Oven [MASK] apple pie[CLS]

Oven [MASK] [MASK] [MASK][CLS]

Oven [MASK] apple pie[CLS]

h

(b) Condenser

Figure 1: Illustration of Transformer Encoder LM and Condenser LM.

never been baked into the LM. We hypothesize the
Optimization Readiness issue causes difficulties for
bi-encoder in low resource setups. We explicitly
address Optimization Readiness in subsection 4.2
with a novel architecture Condenser. Condenser
rewires a Transformer LM to learn information ag-
gregation into the CLS vector.

4 Methodologies

4.1 Preliminaries

Transformer Encoder Many recent state-of-the-
art deep LM adopts the architecture of Transformer
encoder. A Transformer encoder takes in a text
sequence, embed it and pass it through a stack of L
self-attentive Transformer blocks. Formally, given
input text x, we can write iteratively,

h0 = Embed(x) (1)

hl = TFl(h
l−1) (2)

Intuitively, each Transformer blocks refines each
token’s representation conditioning on all tokens
in the sequence and the output becomes a effective
contextualized representation (Peters et al., 2018).

Transformer LM Pre-training Many success-
ful Transformer LM such as BERT (Devlin et al.,
2019) is trained with MLM. MLM masks out a sub-
set of input token and require the model to predict
them. Formally, for a masked out token xi at posi-
tion i, its corresponding final representation hLi is
used to predict the actual xi. Training uses a cross
entropy loss,

Lmlm =
∑

i∈masked

CrossEntropy(WhLi , xi) (3)

A special token, typically referred to as CLS is
prepended and encoded with the rest of the text.

[h0cls;h
0] = Embed([CLS;x]) (4)

[hlcls;h
l] = TFl([h

l−1
cls ;h

l−1]) (5)

Some models train CLS representation explicitly
during pre-training, notably BERT using next sen-
tence prediction (Devlin et al., 2019; Lan et al.,
2020), while others only at fine-tuning time (Yang
et al., 2019; Liu et al., 2019).

Bi-encoder A bi-encoder based on pre-trained
LM typically uses linear transformed CLS repre-
sentation and fine-tune it on some downstream task.
Formally, given matrix Ae×d, we get v ∈ Re

v = AhLcls (6)

A pair of such models, bi-encoder, encode a pair of
texts into two vectors for similarity comparison.

4.2 Condenser
Our readiness theory calls for a model capable of
condensing text sequence information in a single
vector, being learned at pre-training time. In this
section, we show how to achieve this by rewiring
a feed-forward Transformer LM so that MLM is
performed by CONditioning on the DENSE Repre-
sentation (Condenser).

Model design We design Condenser to closely
resemble the popular Transformer encoder LM like
BERT to help provide more controlled understand-
ing. One critical difference in Condenser is that it
places the CLS token at the center of MLM predic-
tion by actively conditioning on it. Condenser is
parametrized into a stack of Transformer encoder
blocks, shown in Figure 1. We divide them into
three groups, Le early encoder backbone layers, Ll



late encoder backbone layers and Lh Condenser
head Layers. We first run the input through the
backbone,

[hearlycls ;hearly] = Encoderearly([h
0
cls;h

0]) (7)

[hlatecls ;hlate] = Encoderlate([h
early
cls ;hearly]) (8)

Condenser Head The critical design difference
is that we put a short circuit from early output to
the head. In particular, the Condenser head takes
in a pair of late-early representations,

[hcdcls;h
cd] = Condenserhead([h

late
cls ;hearly]) (9)

We train with MLM loss with the head’s output,

Lmlm =
∑

i∈masked

CrossEntropy(Whcdi , xi) (10)

Here in the Condenser, the late encoder backbone
can further refine the token representations but can
only pass those information through hlatecls , the late
CLS representation. The CLS representation is
therefore required to aggregate newly generated
information later in the backbone and redistribute
it to tokens in the Condenser head. As Transformer
LMs process local information in earlier layers
and global in the later layers (Clark et al., 2019),
the Condenser CLS will be focused on the global
information generated in later backbone. Layer
numbers Le and Ll control what CLS learns and
should be determined by experiments. For famil-
iar readers, we’d like to point out that Condenser
Head draws inspiration from Funnel Transformer’s
decoder (Dai et al., 2020) with the major differ-
ence that their decoder is used to inflate length-
compressed sequence. The head optimization read-
ies the model: to take advantages of the latter
layers, it is forced to aggregate information into
the CLS. Meanwhile, training on MLM task, Con-
denser remains general pre-training.

Fine-tuning The Condenser head is a pre-train
time architecture and is dropped during fine-tuning
which trains hlatecls and back propagates gradient
only into the backbone. In other words, a Con-
denser reduces to its backbone, or effectively be-
comes a Transformer for fine-tuning. Formally
during fine-tuning, it has the identical functional
space as a same structured Transformer. In practice,
it can be used as a drop-in weight replacement for
a typical Transformer LM.

4.3 Condenser from Transformer
In this paper, we opt to initialize Condenser with
pre-trained Transformer LM weight. This accom-
modates our compute budget, avoiding the huge
cost of pre-training from scratch. Despite heavy
parameter tuning cost of new Transformer archi-
tectures (Nguyen and Salazar, 2019), in section 5
we empirically find this approach allow us to train
stably with BERT’s hyper-parameters. Meanwhile,
initialization from pre-trained weight provides a
better alignment of knowledge between compared
Condenser and Transformer. Given a pre-trained
LM, we initialize the entire Condenser backbone
with its weights and randomly initialize the head.
To prevent gradient back propagated from the ran-
dom head from corrupting backbone weights, we
place a semantic constraint by performing MLM
with backbone late outputs,

Lcmlm =
∑

i∈masked

CrossEntropy(Whlatei , xi) (11)

The full loss is defined as a sum of two MLM losses,

L = Lmlm + Lcmlm (12)

5 Experiments

In this section, we first describe the details in
Condenser pre-training starting from a BERT LM.
Our fine-tuning experiments then look into the im-
pact of conversion from BERT LM into Condenser
BERT. We first look into sentence-level tasks and
turn to passage-level question answering and web
search tasks. For each experiment, we fine-tune on
different size-reduced training sets as well as full
set to study the effects of Optimization Readiness.
While the major comparison is between BERT and
Condenser to validate our readiness theory, we also
include popular non-dense baselines as references.

All of our Condenser fine-tuning runs follow the
philosophy of direct drop-in replacement: we fine-
tune Condenser BERT with identical setup, e.g.
hyper parameters, optimized for BERT training, by
either inheriting setups from public software (in
sentence, open QA), or tuning the hyper param-
eter for BERT (in web search). The goal is to
demonstrate Condenser robustness and versatility
in existing pipelines and therefore the importance
of Optimization Readiness fostered in pre-training.

5.1 Pre-training
We initialize Condenser backbone layers from
BERT 12-layer base model and only 2-layer head



from scratch. Pre-training runs with procedures
described in subsection 4.3, denoted as BERT +
CD. We use an equal split, 6 early layers and 6
late layers. We pre-train over the same data as
BERT: English Wikipedia and the BookCorpus.
This makes sure Knowledge Readiness is kept un-
changed in Condenser. We train for 8 epochs, with
Adam, learning rate of 1e-4 and a linear schedule
with warmup ratio 0.1. We were not able to tune
the optimal layer split or train hyper parameters
due to compute budget limit, but leave that to fu-
ture work. We train on 4 RTX 2080ti with gradient
accumulation.

After pre-training, we discard the Condenser
head 3, resulting in a Transformer model of the
same architecture as BERT.

5.2 Sentence Representation

We start off testing some sentence-level tasks where
an LM is used to encode a short text sequence into
a single vector. The vector similarity then corre-
sponds to the strength of some relation between
two sentences.

Dataset We use two supervised data sets: Seman-
tic Textual Similarity Benchmark(STS-b; Cer et al.
(2017)) and Wikipedia Section Distinction (Ein Dor
et al., 2018) adopted in Reimers and Gurevych
(2019) and also borrow non-BERT baselines from
it. The former is a standard sentence similarity
task from GLUE with a relatively small training
set (∼6K). The latter is large(∼1.8M) and has
an interesting objective, to determine if a pair
of sentences are from the same Wikipedia sec-
tion, very similar to BERT NSP task. Lan et al.
(2020) argue NSP learns exactly topical consis-
tency on Wikipedia. Given the similarity between
pre-training and target task, we expect the original
BERT to be Optimization Ready for Wiki Section.
We report test set Spearman correlation for STS-b
and accuracy for Wiki Section.

Implementation We use the sentence trans-
former software and train STS-b with mean-
squared-error regression loss and Wiki Section
with triplet Hinge loss (Reimers and Gurevych,
2019). The CLS token is used as dense embedding.
The training follows the authors’ released hyper-
parameter settings, Adam optimizer, a learning rate
of 2e-5 with linear schedule, 4 epochs for STS-b

3An exception is the continue training scheme.

and 1 epoch for Wiki section. For Wiki Section,
we train 4 epochs for reduced training size.

Results Table 1 shows performance on STS-b
with various train sizes. With Condenser BERT
consistently outperforms original BERT and has
a much larger margin with smaller train sizes. As
in Figure 2, the margin closes with more training
data but remains non-trivial with full training set.
Also, with as little as 500 training pairs, Condenser
BERT outperforms the SNLI supervised Universal
Sentence Encoder(USE) baseline.

For Wiki Section, as expected, in Table 2 we
observe almost identical result between Condenser
BERT and BERT, both of which outperform pre-
BERT baselines. Meanwhile, even when training
size is as small as 1K, we observe only about 10%
accuracy drop than training with all data. The re-
sults confirm our theory that when an LM is both
knowledge and optimization ready, fine-tuning be-
comes much easier.

STS-b
Model Spearman
GloVe 58.0
Infersent 68.0
USE 74.9
Train Size 500 1K FULL
BERT 68.6 71.4 82.5
BERT + CD 76.6 77.8 85.6

Table 1: STS-b: Results are measures by Spearman
correlation on Test Set.

Wikipedia Section Distinction
Model Accuracy
skip-thoughts 0.62
Train Size 1K 10K FULL
BiLSTM n.a. n.a. 0.74
BERT 0.72 0.75 0.80
BERT + CD 0.73 0.76 0.80

Table 2: Wikipedia Section Distinction : Results are
measures by Accuray on Test Set.

5.3 Open QA
In this section, we test bi-encoders as dense re-
trievers for open QA. Compared to the sentence
level task, search tasks explicitly use the learned
structure of the embedding space, where similar-
ity corresponds to the relevance between a pair of



Open QA
Model Natural Question Trivia QA

Top-20 Top-100 Top-20 Top-100
BM25 59.1 73.7 66.9 76.7
Train Size 1K 10K FULL 1K 10K FULL 1K 10K FULL 1K 10K FULL
BERT 66.6 75.9 78.4 79.4 84.6 85.4 68.0 75.0 79.3 78.7 82.3 84.9
BERT + CD 72.7 78.3 80.1 82.5 85.8 86.8 74.3 78.9 81.0 82.2 85.2 86.1

Table 3: Open QA: Results on Natual Question and Triavia QA measured by Top-20/100 Hits over various training
sizes. The BERT results correspond in practice to the vanilla DPR setup.

Train Size

Sp
ea

rm
an

0.65

0.70

0.75

0.80

0.85

500 1k 2k 4k FULL

Bert BERT + CD

Figure 2: STS-B: Performance measured by Spearman
correlation on various training size.

query, passage. Recent works like Dense Passage
Retrieval(DPR; Karpukhin et al. (2020) adopt a
contrastive loss in training, computing for query q,
negative log likelihood of a positive document d+

over a set of negative documents {d−1 , d
−
2 , ..d

−
l ..}.

L = − log
exp(s(q, d+))

exp(s(q, d+)) +
∑
l

exp(s(q, d−l ))

(13)
For inference, all passages in a corpus are en-
coded into an index, queried with inner product
search. The dense retriever can be integrated into
different styles of open QA pipeline like DPR or
RAG (Lewis et al., 2020b). Here, we focus on
understanding retrieval quality.

Dataset We use two query sets, Natural Ques-
tion(NQ; Kwiatkowski et al. (2019)) and Trivia
QA(TQA; Joshi et al. (2017)), as well as the
Wikipedia corpus cleaned up and released with
DPR. NQ contains questions from Google search
and TQA contains a set of trivia questions. Both
NQ and TQA have about 60K training data post-
processing. We refer readers to Karpukhin et al.
(2020) for processing details. We adopt DPR evalu-
ation metrics, hit accuracy of Top-20 and Top-100.

Implementation We use DPR and train follow-
ing published setups: 128 batch size, 1 BM25 neg-

ative, in-batch negatives, 40 epochs, 1e-5 learning
rate and linear schedule with warmup. We train on
a single RTX 2080ti using gradient check-pointing.

Results In Table 3, we record test set perfor-
mance for NQ and TQA. In general, we observe
similar patterns on both data sets: towards the
smaller training side, Condenser BERT achieves
a large performance advantage over BERT, drop-
ping less than 10% compared to full-size training
for Top-20 Hit and less than 5% for Top-100. The
improvement is more significant when considering
the gain over unsupervised BM25. Trends on NQ
are also plotted in Figure 3 where with increas-
ing training size, the performance margin narrows,
down finally to 2%, suggesting sufficient training
can make up for missing Optimization Readiness
and help learn the task structure.

Train Size

To
p-

20
 H

IT

65.0

67.0

69.0

71.0

73.0

75.0

77.0

79.0

81.0

1k 10k 20k 40k FULL

BERT BERT + CD

Train Size

To
p-

10
0 

H
IT

79.0

81.0

83.0

85.0

87.0

1k 10k 20k 40k FULL

BERT BERT + CD

Figure 3: NQ: Effect of training size. Performance
measured by Top-20 Hit (upper) and Top-100 hit
(lower).



MS-MARCO Passage Ranking
Model MRR@10 Recall@100 Recall@1K
BM25 0.184 0.657 0.853
Train Size 1K 10K FULL 1K 10K FULL 1K 10K FULL
DeepCT n.a. n.a. 0.243 n.a. n.a. n.a. n.a. n.a. 0.909
BERT 0.146 0.221 0.305 0.539 0.688 0.810 0.749 0.860 0.933
BERT + CD 0.175 0.251 0.320 0.621 0.737 0.829 0.820 0.898 0.944
BERT + CD + CT 0.193 0.265 0.335 0.653 0.760 0.857 0.842 0.911 0.958

Table 4: Web Search - MS-MARCO: Performacne is measured by MRR@10, Recall@100/1k. Results not
available are denoted ‘n.a.’. ‘CD’ refers to general Condenser pre-training and ‘CT’ to continue pre-training on the
MS-MARCO corpus.

M
R

R
@

10

0.140

0.190

0.240

0.290

0.340

1k 10k 20k 40k FULL

BERT BERT + CD BERT+CD+CT

R
ec

al
l@

10
0

0.550

0.600

0.650

0.700

0.750

0.800

0.850

1k 10k 20k 40k FULL

BERT BERT + CD BERT+CD+CT

R
ec

al
l@

1k

0.750

0.800

0.850

0.900

0.950

1k 10k 20k 40k FULL

BERT BERT + CD BERT+CD+CT

Figure 4: MS-MARCO: Effect of training size. ‘CD’
refers to general Condenser pre-training and ‘CT’ to
continue pre-training on the MS-MARCO corpus.

5.4 Web Search

The model setup of web search is very similar to
open QA. Some big differences lie in the data sets.
Compared to Wikipedia in Open QA, web search
corpus covers a wider variety of passages from the
web. The data set judgments are typically gener-
ated from user click information. As a result, both
training and testing data will be noisier, containing
a sizable number of false negatives and potentially
also false positives. In this section, we examine

how various bi-encoders work under these noises.
Meanwhile, the retrieval results are commonly pre-
sented to the user or to a reranker for reranking.
Note that direct comparison between open QA and
web search results is less meaningful.

Dataset We use the MS-MARCO passage rank-
ing dataset (Bajaj et al., 2018), which has been
used in evaluating many information retrieval sys-
tems. It is constructed from Bing’s search query
logs and web documents retrieved by Bing. The
training set has about 0.5M queries. We include
BM25 and BERT augmented term weight BM25,
DeepCT (Dai and Callan, 2019) for performance
reference. We report on the Dev set4 MS-MARCO
official metrics MRR@10 and Recall@1k, and in
addition Recall@100 for limited reranking budgets.

Continue Training For MS-MARCO, there is
also a Knowledge Readiness issue: pre-training
corpora (Wikipedia and BookCorpus) are different
from MS-MARCO web passages collection. We,
therefore, add an additional pre-training step where
we continue pre-training Condenser BERT on the
passage collection. This procedure is unsupervised
and happens after general pre-training and before
fine-tuning. This experiment aims at demonstrat-
ing: 1) the Condenser architecture also inherits the
continue training capability, 2) Knowledge Readi-
ness is also critical.

Implementation We train using a contrastive
loss with learning rate of 5e-6 with a linear sched-
ule and a 0.1 warmup ratio on a single RTX20805.
We pair each query with 8 passages and use a total
batch of 64 passages. For continue-training, we

4The test was hidden and MS-MARCO organizers recom-
mend performing studies over the Dev set.

5Hyper parameters are tuned for BERT on this hardware.



inherit the pre-training setup but use a decreased
learning rate of 5e-6.

Result In Table 4, we again find a very similar
comparison in low resource end, Condenser BERT
significantly outperforms BERT while adding con-
tinue training further improves performance. We
however observe big drops in all bi-encoder mod-
els with small train sizes. We believe this is due
to the fact that MS-MARCO training is not only
much larger but also noisier than NQ or TQA. In
Figure 4, we see across all training sizes, there is
a clear separation among bi-encoders from BERT,
Condenser BERT (BERT + CD), continue-trained
Condenser (BERT + CD + CT): the differences
show the importance of both Optimization and
Knowledge Readiness. We also find that with full
training, non-trivial performance differences still
exist among the three bi-encoders towards the top
of the ranking: when the training set is noisier,
better initialization, knowledge and optimization
ready, can give better performance even with large
training data.

0.1

0.5

1

5

10

2 4 6 8 10

BERT BERT + CD

Figure 5: NQ: Loss in first 10 epochs log-scale.

5.5 Discussion
We want to be careful about drawing conclusions
on what we learn from the previous experiments.
With Condenser, we keep the same MLM loss and
therefore the LM acquires a similar general lan-
guage knowledge. Meanwhile, the Condenser ar-
chitecture has an architecture that forces itself to
build up dense representation during pre-training,
and consequently optimization ready itself. In Fig-
ure 5, we plot training loss of BERT v.s. Con-
denser BERT. In early epochs, Condenser models
consistently have lower loss than original BERT. In

comparison, earlier approaches train over “pseudo”
data to achieve a conversion from standard LM to
dense representation encoder. Based on our results,
we believe one of the fundamental effects of this
fine-tuning is to learn the task structure and make
up for missing Optimization Readiness. However,
as the training objective is no longer language mod-
eling, this fine-tuning also train a task semantic cap-
tured by the pseudo data. This explains why craft-
ing proper pre-training data is crucial for model
sucess (Chang et al., 2020; Thakur et al., 2020).

6 Conclusion

Fine-tuning, as the original word, refers to the pro-
cess of making small adjustments to achieve better
performance. With respect to deep LM, the adjust-
ments are not necessarily small. In this paper, we
found, when it comes to bi-encoder, standard LM
spends big efforts changing internal behavior to
fit task structure. We present a Readiness theory
of optimization and knowledge, describing the re-
quired effort for fine-tuning on the target task. The
theory guides us to modify vanilla Transformer
encoder architecture into Condenser. By actively
conditioning on dense representation for MLM
task, Condenser is readied for dense representation
fine-tuning. Condenser demonstrates Optimization
Ready is critical for more sample efficient and ef-
fective training of deep LM bi-encoder. For future
research, our theory can provide guidelines on not
only how to design more effective pre-training ar-
chitecture but also how to further improve tasks
like ICT to improve bi-encoder performance.

Our proposed architecture also has the poten-
tial for real-world application. For practitioners
without massive compute resources, specialized
pre-training architectures and tasks deviate the pre-
trained model from BERT like general language
understanding. When pre-training is not aligned
well with the target task, they have to but may
not not be able to pay the expensive pre-training
cost. The fact that Condenser readies the model in
the LM pre-training stage means most users can
take pre-trained models directly into the fine-tuning
pipeline and get instant benefits.

This paper studyies Optimization Readiness
while assuming Knowledge Readiness can be es-
tablished with large unsupervised corpus. Future
works can explore setups where large unsupervised
corpora are not naively attainable, to see how the
two readiness issues interact.



References
Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng,

Jianfeng Gao, Xiaodong Liu, Rangan Majumder,
Andrew McNamara, Bhaskar Mitra, Tri Nguyen,
Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Ti-
wary, and Tong Wang. 2018. Ms marco: A human
generated machine reading comprehension dataset.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings
of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1–14, Vancouver,
Canada. Association for Computational Linguistics.

Daniel Cer, Yinfei Yang, Sheng yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St. John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
Yun-Hsuan Sung, Brian Strope, and Ray Kurzweil.
2018. Universal sentence encoder.

Wei-Cheng Chang, Felix X. Yu, Yin-Wen Chang, Yim-
ing Yang, and Sanjiv Kumar. 2020. Pre-training
tasks for embedding-based large-scale retrieval.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does bert
look at? an analysis of bert’s attention. ArXiv,
abs/1906.04341.

Alexis Conneau and Douwe Kiela. 2018. Senteval: An
evaluation toolkit for universal sentence representa-
tions. ArXiv, abs/1803.05449.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loı̈c
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. In Proceedings of
the 2017 Conference on Empirical Methods in Nat-
ural Language Processing, pages 670–680, Copen-
hagen, Denmark. Association for Computational
Linguistics.

Zhuyun Dai and J. Callan. 2019. Context-aware sen-
tence/passage term importance estimation for first
stage retrieval. ArXiv, abs/1910.10687.

Zihang Dai, Guokun Lai, Yiming Yang, and Quoc V.
Le. 2020. Funnel-transformer: Filtering out se-
quential redundancy for efficient language process-
ing. ArXiv, abs/2006.03236.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Liat Ein Dor, Yosi Mass, Alon Halfon, Elad Venezian,
Ilya Shnayderman, Ranit Aharonov, and Noam

Slonim. 2018. Learning thematic similarity metric
from article sections using triplet networks. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 49–54, Melbourne, Australia. Asso-
ciation for Computational Linguistics.

Kelvin Guu, Kenton Lee, Z. Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. Realm: Retrieval-
augmented language model pre-training. ArXiv,
abs/2002.08909.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 328–339, Melbourne, Australia.
Association for Computational Linguistics.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A large scale dis-
tantly supervised challenge dataset for reading com-
prehension. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1601–1611, Van-
couver, Canada. Association for Computational Lin-
guistics.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 6769–
6781, Online. Association for Computational Lin-
guistics.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov,
Richard S. Zemel, Antonio Torralba, Raquel Urta-
sun, and Sanja Fidler. 2015. Skip-thought vectors.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Al-
berti, Danielle Epstein, Illia Polosukhin, Jacob De-
vlin, Kenton Lee, Kristina Toutanova, Llion Jones,
Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai,
Jakob Uszkoreit, Quoc Le, and Slav Petrov. 2019.
Natural questions: A benchmark for question an-
swering research. Transactions of the Association
for Computational Linguistics, 7:452–466.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Sori-
cut. 2020. Albert: A lite bert for self-supervised
learning of language representations. ArXiv,
abs/1909.11942.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised open
domain question answering. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 6086–6096, Florence,
Italy. Association for Computational Linguistics.

http://arxiv.org/abs/1611.09268
http://arxiv.org/abs/1611.09268
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
http://arxiv.org/abs/1803.11175
http://arxiv.org/abs/2002.03932
http://arxiv.org/abs/2002.03932
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P18-2009
https://doi.org/10.18653/v1/P18-2009
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
http://arxiv.org/abs/1506.06726
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.18653/v1/P19-1612
https://doi.org/10.18653/v1/P19-1612


Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020a. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Patrick Lewis, Ethan Perez, Aleksandara Piktus,
F. Petroni, V. Karpukhin, Naman Goyal, Heinrich
Kuttler, M. Lewis, Wen tau Yih, Tim Rocktäschel,
Sebastian Riedel, and Douwe Kiela. 2020b.
Retrieval-augmented generation for knowledge-
intensive nlp tasks. ArXiv, abs/2005.11401.

Y. Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar
Joshi, Danqi Chen, Omer Levy, M. Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. 2019. Roberta:
A robustly optimized bert pretraining approach.
ArXiv, abs/1907.11692.

Toan Q. Nguyen and Julian Salazar. 2019. Transform-
ers without tears: Improving the normalization of
self-attention. ArXiv, abs/1910.05895.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Matthew E. Peters, Sebastian Ruder, and Noah A.
Smith. 2019. To tune or not to tune? adapting pre-
trained representations to diverse tasks. In Proceed-
ings of the 4th Workshop on Representation Learn-
ing for NLP (RepL4NLP-2019), pages 7–14, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Colin Raffel, Noam M. Shazeer, Adam Roberts,
Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, W. Li, and Peter J. Liu. 2020. Explor-
ing the limits of transfer learning with a unified text-
to-text transformer. J. Mach. Learn. Res., 21:140:1–
140:67.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for
Computational Linguistics.

Nandan Thakur, Nils Reimers, Johannes Daxenberger,
and Iryna Gurevych. 2020. Augmented sbert: Data
augmentation method for improving bi-encoders for
pairwise sentence scoring tasks.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, L. Kaiser,
and Illia Polosukhin. 2017. Attention is all you need.
ArXiv, abs/1706.03762.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353–355, Brussels, Belgium.
Association for Computational Linguistics.

Z. Yang, Zihang Dai, Yiming Yang, J. Carbonell,
R. Salakhutdinov, and Quoc V. Le. 2019. Xlnet:
Generalized autoregressive pretraining for language
understanding. In NeurIPS.

https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/W19-4302
https://doi.org/10.18653/v1/W19-4302
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
http://arxiv.org/abs/2010.08240
http://arxiv.org/abs/2010.08240
http://arxiv.org/abs/2010.08240
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446

