
11-442/11-642: Search Engines Spring 2025

Homework 3
Released: February 22, 2025 Due: March 17, 2025

The goal of this homework assignment is to get you familiar with core problems in recom-
mender systems. It will cover,

• similarity-based recommendation

• matrix factorization-based recommendation

• preference-based recommendation

• learning to rank for recommendation

1 Material

1.1 Data

Download the dataset for the assignment from https://boston.lti.cs.cmu.edu/classes/11-
642/HW/HW3/movierec.tgz. The dataset consists of four files recording the implicit feed-
back signals from users.

Consumption data (consumption.jsonl). Feedback for a user-item pair. Each line in
this jsonl represents all of information we have about user consumption. This includes a user
id (uid), a list of implicit feedback information (implicit), and a list of explicit feedback
information (explicit).

Each element of the implicit feedback list includes the movie id (mid), an integer times-
tamp representing the seconds since January 1, 1970 (time), and a float between 0 and 10
representing the implicit feedback score (value). All time zones are aligned. The implicit
feedback signal is the output of a linear model of how much a user liked a movie that they
watched based on the user’s view time, clicks, and shares of the movie (after they watched
the movie). In other words, the implicit feedback signal for user u after consuming movie i
is

ỹu,i = b+ wT
u,ixu,i

where xu,i is a vector of observed user-item signals from log data, wu,i is a vector of weights,
and b is a bias term. The model predictions are comparable within an individual user’s
data but may not be comparable across users. You do not need to know x or w for this
assignment. The engineering team has let you know that there was a bug in the implicit

1

https://boston.lti.cs.cmu.edu/classes/11-642/HW/HW3/movierec.tgz
https://boston.lti.cs.cmu.edu/classes/11-642/HW/HW3/movierec.tgz


feedback model during all of February 2024, August 2024, and October 2024 that added 2
to the bias term of the linear model.

Each element of the explicit feedback list includes the movie id (mid) and a binary relevance
rating explicitly provided by the user for that movie (value). We can consider ratings as
ground truth and comparable across users.

Movie information (movies.jsonl). Each line of this jsonl represents all of the infor-
mation we have about a movie. This includes a movie id (mid), its name (name), a list of
zero or more genres (genre), a list of zero of more user-provided tags (tags), and the release
year (year).

Test movies (test.jsonl). Each line of this jsonl represents the movies to rank for 500
users in the test set.

Explicit feedback (explicit.qrel). A separate file of explicit ratings from consumption.jsonl

in trec eval format. This is ground truth data you can use to evaluate system rankings.

Explicit feedback (explicit.jsonl). A separate file of movies with explicit ratings from
consumption.jsonl in the same format as test.jsonl. This should let you compare your
performance to users in explicit/.

Test cases (explicit/*). Evaluation output for several models using the explicit ratings.
These are not the complete set of runs expected but a subset to help you understand the
type of performance you should be getting.

1.2 Code

For linear algebra, such as matrix factorization, you should use scipy.sparse.linalg.

For Bayes Personalized Ranking (BPR), you should use the cornac package.

As with previous assignments, we will be using trec eval to evaluate performance. As such,
all results should be generated in five-column trec eval format,

<uid> Q0 <mid> <rank> <score> <model id>

where scores should rank movies in decreasing order.

2



2 Experiments

2.1 Recommendation based on user similarity

Implement user similarity based on cosine similarity and Pearson correlation using the im-
plicit consumption data.

Next implement a k-nearest neighbor algorithm to predict the implicit feedback score of a
new item. If κ(u, v) is the similarity between users u and v using either cosine or Pearson,
then the k-nearest neighbor predictor will output,

ŷu,i =
1

Z
∑
v∈N k

u

(ỹv,i − yv)× κ(u, v)

where N k
u are the k most similar users to u given similarity κ, yu is the mean (non-zero)

implicit feedback score for user u, and,

Z =
∑
v∈N k

u

κ(u, v)

If a movie is not present in the implicit data, you should score it as -10000 and rank it last.
You use these scores to rank movies and evaluate the rankings using trec eval and the
explicit data explicit.qrels.

You should submit the following files, each set of per-user rankings of movies in test.jsonl.
You should only rank those movies for each user. Please generate rankings for k = {1, 5, 10}.

• knn-cosine-k.run

• knn-pearson-k.run

where k is replaced by the value in the run.

2.2 Recommendation based on matrix factorization

In this part, we will use singular value decomposition (SVD) to predict implicit scores. LetA
be the m× n user-item matrix of implicit values from consumption.jsonl. In other words,
Au,i = ỹu,i. As discussed in class, we can use SVD to decompose A into three matrices,

A = UΣVT

We can take the k largest singular values as,

Ut m× k submatrix of U associated with the largest k singular values.

Σt k × k submatrix of Σ associated with the largest k singular values.

Vt n× k submatrix of V associated with the largest k singular values.

3



and reconstruct A as,

Ã = UtΣtV
T
t

so that Ãu,i is the predicted ratings of movie i for user u. If a movie is not present in the
implicit data, you should rank it last.

We can also compute the SVD using mean-shifted values,

ỹu,i − yu

where yu is defined in Section 2.1. Note that we only shift the observed values in the implicit
data, not the unobserved values. We can compute SVD on this adjusted matrix as with the
original implicit data. If a movie is not present in the implicit data, you should rank it last.

You should submit the following files, each set of per-user rankings of movies in test.jsonl.
You should only rank those movies for each user. Please generate rankings for k = {25, 50, 100}.

• svd-k.run

• svd-k-mean-shifted.run

2.3 Recommendation based on pairwise preferences

We will consider Bayes Personalized Ranking to learn from pairwise preferences.

You can read your data into a cornac.data.Dataset by loading a list of ⟨u, i, ỹu,i⟩ tuples
through cornac.data.Dataset.build. As a convenience, cornac.data.Dataset includes
two maps uid map which converts user id strings into row indexes and iid map which converts
item id strings into column indexes.

To train a model, you should use cornac.models.BPR, initialized as,

bpr = BPR(k=50, lambda_reg=0.001)

where k indicates the embedding dimension. You can then train the model using bpr.fit(data)
if data is a cornac.data.Dataset. Please use lambda reg=0.001 for all experiments. If
you would like to observe progress during training, you can include verbose=True.

In order to score items for a user, you can call bpr.score with a user and item index. If a
movie is not present in the implicit data, you should rank it last.

You should submit the following files, each set of per-user rankings of movies in test.jsonl.
You should only rank those movies for each user. Please generate rankings for k = {25, 50, 100}.

• bpr-k.run

• bpr-k-mean-shifted.run

4



2.4 Learning to rank

Finally, we will combine the movie scores based on cosine similarity, Pearson correlation,
SVD, and BPR using a learning to rank framework of your choice from Homework 2. You
can generate training data from the explicit feedback information in consumption.jsonl.

Consider the following feature sets,

• f1:6: one feature for each of the six rankers in the previous questions,

f1: nearest neighbor with cosine similarity, k = 10.

f2: nearest neighbor with Pearson correlation, k = 10.

f3: SVD, k = 50.

f4: mean-shifted SVD, k = 50.

f5: BPR, k = 50.

f6: mean-shifted BPR, k = 50.

• f7:8: two custom features you are free to define using information in movies.jsonl.
You should design features that are likely to be correlated with utility to the user.

Train a model using only f1:6 and a second using all features f1:8.

You should submit the following files, each set of per-user rankings of movies in test.jsonl.
You should only rank those movies for each user.

• ltr-base.run

• ltr-base+custom.run

3 Questions

In addition to these runs, please provide answers to the following questions.

3.1 11-442 students

1. Explain any difference in performance between k-nearest neighbor with cosine similar-
ity and Pearson correlation.

2. Explain any difference in performance between when mean-shifting when using SVD
and BPR.

3. Describe your custom features and why they were reasonable proxies for utility.

5



3.2 11-642 students

1. Explain any difference in performance between k-nearest neighbor with cosine similar-
ity and Pearson correlation.

2. Explain any difference in performance between when mean-shifting when using SVD
and BPR.

3. Custom features.

(a) Describe your custom features and why they were reasonable proxies for utility.

(b) Describe the types of users or movies where they helped (or didn’t). You can look
at things like the amount of data associated with the user, the genre’s the user is
interested in, and so forth.

4. Using information in movies.jsonl, plot the relationship between rank position and
(i) release years and (ii) genres. The horizontal axis of each scatterplot should be
the year or genre and the vertical axis should be the rank position. Provide a brief
explanation for any trends you observe.

4 Report

For 11-442 students, you can find a template for your report here.

For 11-642 students, you can find a template for your report here.

5 Design guide

You can find a design guide at here.

6 Submission

Create a .tgz file that contains your runs in trec eval format. Name your report yourAndrewID-
HW3-Report.pdf and place it in the same archived directory that contains your runs.

6

https://boston.lti.cs.cmu.edu/classes/11-642/HW/HW3/HW3-Template-442.docx
https://boston.lti.cs.cmu.edu/classes/11-642/HW/HW3/HW3-Template-642.docx
https://boston.lti.cs.cmu.edu/classes/11-642/HW/HW3/hw3-guide.pdf

	Material
	Data
	Code

	Experiments
	Recommendation based on user similarity
	Recommendation based on matrix factorization
	Recommendation based on pairwise preferences
	Learning to rank

	Questions
	11-442 students
	11-642 students

	Report
	Design guide
	Submission

