""" A simple example to illustrate the use of BERT for reranking documents. """ # Copyright (c) 2024, Carnegie Mellon University. All Rights Reserved. import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification from Idx import Idx # ------------------ Configuration ------------------------- # bert_max_sequence_length = 512 # Max WordPiece tokens bert_modelPath = "INPUT_DIR/ms-marco-MiniLM-L-12-v2" # Stored BERT model indexPath = "INPUT_DIR/index-cw09" # ------------------ Global variables ---------------------- # bert_model = None bert_tokenizer = None # ------------------ Methods ------------------------------- # def bert_prepare_tokenized_input(query, doc): """ Tokenize a (query, document) pair, convert to token ids, return as tensors. Input: query and document strings. Output: a dictionary of tensors that BERT understands. input_ids: The ids for each token. token_type_ids: The token type (sequence) id of each token. attention_mask: For each token, mask(0) or don't mask(1). Not used. """ bert_input = bert_tokenizer.encode_plus( [query, doc], # sequence_1, sequence_2 add_special_tokens=True, # Add [CLS] and [SEP] tokens? max_length=bert_max_sequence_length, truncation="only_second", # If too long, truncate sequence_2 return_tensors="pt") # Return PyTorch tensors print(f"\tBERT input: {bert_input}") # Display WordPiece tokens. This is just FYI. It is not necessary. tokens = bert_tokenizer.convert_ids_to_tokens(bert_input['input_ids'][0]) print(f"\tWordPiece tokens: {tokens}") return(bert_input) def bert_score_sequence(input_dict): """ Score a (query, document) pair. Input: the tokenized sequence. Output: the reranking score. """ with torch.no_grad(): # Feed the tokenized sequence to the reranker for scoring. outputs = bert_model(**input_dict) print(f"\tBERT Output: {outputs}") # Extract the classification score and transform to python float. score = outputs.logits.data.item() return(score) # ------------------ Script body --------------------------- # Idx.open(indexPath) # Initialize BERT from a pretrained model checkpoint bert_tokenizer = AutoTokenizer.from_pretrained(bert_modelPath) bert_model = AutoModelForSequenceClassification.from_pretrained( bert_modelPath, num_labels=1) bert_model.eval() # Match a query to two documents. query = "quit smoking" print(f'QUERY:\t{query}\n') doc = Idx.getAttribute("title-string", 304969) print(f'DOC 304969:\t{doc}') encoded_sequence = bert_prepare_tokenized_input(query, doc) score = bert_score_sequence(encoded_sequence) print(f'\t(q, d) score:\t{score}\n' ) doc = Idx.getAttribute("body-string", 288258) print(f'\nDOC 288258:\t{doc}') encoded_sequence = bert_prepare_tokenized_input(query, doc) score = bert_score_sequence(encoded_sequence) print(f'\t(q, d) score:\t{score}\n' )