Course Description: |
This lecture-oriented course studies the theory, design, and
implementation of text-based search engines, retrieval augmented
generation, and recommender systems. The core components include
statistical characteristics of text, several important lexical
retrieval models, several recent neural models, experimental
evaluation, and fair ranking. The course also covers common
elements of commercial search engines, for example, personalized
search results and diverse search results. The software
architecture components include design and implementation of
large-scale, distributed search engines. This is a full-semester course. The graduate section (11-642) is 12 units. The undergraduate section (11-442) is 9 units. The main difference between the two sections (11-442, 11-642) is the amount of analysis, writing, and time required to complete homework assignments. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Learning Objectives: |
By the end of the course, students are expected to have
developed the skills listed below.
Skills are assessed by the homework assignments; and by exams. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Eligibility: | This course is open to all students who meet the prerequisites. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites: |
This course requires good programming skills and an understanding of
computer architectures and operating systems (e.g., memory vs. disk
trade-offs). A basic understanding of probability, statistics, and
linear algebra is helpful. Thus students should have preparation
comparable to the following CMU undergraduate courses.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Time & Location: |
Tu/Th 3:30-4:50, GHC 4401 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Instructors: | Jamie Callan and Fernando Diaz | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Teaching Assistants: | TBD | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Office hours: | TBD | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Materials: |
Lecture Slides: Copies of the lecture slides are posted on this page,
usually within 24 hours.
Textbook: The textbook is Introduction to Information Retrieval, Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schutze, Cambridge University Press. 2008. You may use the printed copy or the online copy, but note that the reading instructions refer to the printed copy. Readings: There are additional selected readings, which will be available through the class web page (this page). Piazza: A discussion forum is provided for students to ask questions, answer questions, and discuss class-related topics. The TAs monitor Piazza 11am-7pm M-F, and 3-7pm on the weekends. You must register yourself to access the discussion forum. Please provide a CMU email address when you join the discussion (you can use other email addresses, too). We will periodically remove people that do not have CMU email addresses. Homework Services: A Homework Services web page provides information about your homework submissions and access to graded homework reports. Each individual homework has its own web pages that describe the assignment and provide access to automated testing services. Restricted access: Online access to some materials (additional readings, lecture notes, datasets, etc) is restricted to CMU people. Students on CMU local and virtual private networking IP addresses have direct access. Other students can gain access using a password. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Homework: | 5 assignments that give hands-on experience with techniques discussed in class. Homework must be done individually, and students may not share their work with other students. See the course Academic Integrity policy for more information. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Grading: | 5 homework assignments (12% each, 60% total), midterm exam (20%), final exam (20%). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Grading Scale: |
Grades are assigned using a curve. Typically the median GPA is about 3.5. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course policies: |
Academic Integrity, Attendance, Auditing, Generative AI, Laptops & mobile devices, Late homework, Pass/Fail, Waitlist | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Syllabus: |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Accommodations for Students with Disabilities: | If you have a disability and are registered with the Office of Disability Resources, I encourage you to use their online system to notify me of your accommodations and discuss your needs with me as early in the semester as possible. I will work with you to ensure that accommodations are provided as appropriate. If you suspect that you may have a disability and would benefit from accommodations but are not yet registered with the Office of Disability Resources, I encourage you to contact them at access@andrew.cmu.edu. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
If You Are Having Difficulty: |
If you are having difficulty in any of your courses, please consider
reaching out to the Student
Academic Success Center (SASC). SASC provides the following services.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Advice From The Faculty: |
This course is a lot of work.
Take care of yourself. Do your best to maintain a healthy lifestyle this semester by eating well, exercising, avoiding drugs and alcohol, getting enough sleep and taking some time to relax. This will help you achieve your goals and cope with stress.
If you find yourself struggling with the material or workload, please ask for help. All of us benefit from support during times of struggle. You are not alone. There are many helpful resources available on campus and an important part of the college experience is learning how to ask for help. Asking for support sooner rather than later is often helpful. If you or anyone you know experiences any academic stress, difficult life events, or feelings like anxiety or depression, we strongly encourage you to seek support. Counseling and Psychological Services (CaPS) is here to help: call 412-268-2922 and visit their website at https://www.cmu.edu/counseling/. Consider reaching out to a friend, faculty or family member you trust for help getting connected to the support that can help. |
Copyright 2024, Carnegie Mellon University.
Updated on November 07, 2024